Nia Jetter, senior principal technologist for Amazon Fulfillment Technology Robotics, is seen speaking into a mic near a stand with an open laptop on it
Nia Jetter, senior principal technologist for Amazon Fulfillment Technology Robotics, is working on improving components of Amazon’s delivery operations by focusing on embedding best practices into the design process.

From aerospace to Amazon, Nia Jetter is blazing new paths

Jetter says her goals include lowering barriers to understanding technology and cultivating a more diverse workforce.

“I work in robotics and artificial intelligence. We're building robots that are going to help the world.” As introductions — or elevator pitches — go, that’s an especially strong one.

That’s how Nia Jetter, senior principal technologist for Amazon Fulfillment Technology Robotics, answers the question: What do you do?

Jetter is an engineer who has been recognized throughout her career for her accomplishments in autonomous systems, so her confidence is earned. Her goals extend beyond developing new algorithms, and include lowering barriers to understanding technology and cultivating a more diverse workforce.

“At Amazon, I am working on laying a foundation for how we build collaborative autonomous systems safely across our robotics platforms,” Jetter notes. “I’m also working on forward looking research on ways to architect and develop safety critical autonomous systems in a way that is verifiable while leveraging techniques like machine learning.”

Jetter’s work is centered on improving components of Amazon’s delivery operations by focusing on embedding best practices into the design process. She believes automation, achieved with artificial intelligence and next-generation robots, can deliver improvements for both Amazon employees and customers.

Robotics research at Amazon
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

“People want their packages quickly, including me,” she says with a laugh. “So, when you look at our fulfillment centers, I'm hugely passionate about: What are the ways that we can help my colleagues working there? How can we help our customers?”

To that end, Jetter, along with other scientists and engineers within her organization, is analyzing activities that could be more easily and safely accomplished with robots. In order to support this work, her team and others across Amazon collaborate with a variety of universities, including the University of Washington. Jetter sits on the advisory board for the UW-Amazon Science Hub and also serves as an Amazon research liaison.

“We are working on developing solutions to challenges faced across multiple industries and are working to do so in a scalable fashion by developing in a way that supports modularity. There is a lot of space for innovation in safe autonomy, AI, and robotics,” she said. “I am passionate about pursuing research that can be inserted into products in that space.”

An early love for learning

Jetter displayed engineering talent from a young age.

As a second grader she would find scrap insulated wire at the base of utility poles, and would save quarters given to her by her grandfather for small chores to buy LEDs, light bulbs, and batteries from RadioShack. Her father, a mail carrier, would help her find books that explained electrical circuits. While in elementary school, she used a piece of foam core and her RadioShack purchases to create an illuminated Valentine’s Day card for her science teacher.

Her path shifted toward computer programming while she was still in elementary school. She took a computer class and said her interest was immediately piqued. She began spending her spare moments in the computer room writing programs in HyperCard, soon followed by Fortran, Pascal, and C.

“I loved programming at school,” she says. “I would go on my lunch hour and stay after school. Looking back, while at the time I did not think of it as something I would do for a career, I realize I was good at it.”

In high school, she received a letter from MIT encouraging her to apply to the MIT Introduction to Technology, Engineering, and Science (MITES) program. At the time, the program took 50 high school students and brought them to campus to take intense science and engineering classes and to familiarize them with the institute.

He didn’t see me as a black girl who was good at math. He saw me as a mathematician. That meant the world to me.
Nia Jetter

Jetter said the magnitude of the potentially life-changing opportunity was not immediately evident to her, namely because she had never heard of MIT. “Little did I realize that that letter, and attending the MITES program, would become a significant part of my origin story as an engineer,” she noted.

Her experience with MITES led directly to enrolling at MIT. She intended to study biochemical engineering, but while there she was exposed to more advanced math and computer science classes and found that she loved them. Her career path was set when, in her sophomore year, she took an artificial intelligence class with the late Patrick Henry Winston, her future mentor and then director of the MIT Artificial Intelligence Laboratory.

“There are several points in my journey where I met people who saw more in me than I saw in myself, people who filled a gap for me through exposure to what was possible. Professor Winston saw me as a scientist and a mathematician first, and encouraged me to push the envelope and be all that I could be.

Nia Jetter is seen sitting in a chair with a telescope on a stand in front of her and windows behind her, she is smiling into the camera
Nia Jetter said her career path was set when she took an artificial intelligence class with the late Patrick Henry Winston. “Professor Winston saw me as a scientist and a mathematician first, and encouraged me to push the envelope and be all that I could be."

“He didn’t see me as a black girl who was good at math. He saw me as a mathematician. That meant the world to me,” Jetter says.

A lifelong science fiction fan, Jetter also set her sights on working for NASA. She interned there for three summers.

“When I was on the atmospheric experiments team, I recognized that their algorithms could be improved. I’m not sure they took the suggestion from an intern seriously, but I wrote a paper explaining what I saw, and I gave it to the department head,” she recalled. “The next Monday, he came into the office and told me to get started.

“What I learned from my NASA internships was the value of being a mathematician or a computer scientist. I learned that every team needs a computer scientist.”

Before her graduation from MIT in 2000, a chance encounter with a recruiter from Hughes Space and Communications (acquired in October 2000 by Boeing) convinced her to work there on a project involving automated controls. Although she had some early challenges, she quickly realized she could solve those by drawing on her own experiences.

“I derived mathematical models and eventually I was asked to ‘Derive the gains for the controller.’ At the time I had no idea what that meant. I was fortunate to be taught by leaders in the field and quickly learned that a controller is very analogous to an intelligent agent in how it needs to perceive, make decisions and act on its environment. That work led me to enroll at Stanford in 2005 to get a master’s degree in aeronautical and astronautical engineering while I worked at Boeing.”

A milestone moment

In 2013, her work at Boeing led to her being honored as a Boeing associate technical fellow – the first tier of the Technical Fellowship. At the Boeing facility in El Segundo, California, in what is called the “hall of flags,” there is a wall with photos of the Boeing technical fellows.

“From when I first saw the wall, I knew that one day my face would be on it. I’ll never forget the day I walked down the hall and my photo was up! I was the first black woman with my face on the wall at my site. I didn’t realize the photo would mean so much to me, but when I first saw it on the wall, it really stood out.”

Diversity, equity, and inclusion
Program is aimed at expanding participation in operations research, management science, and analytics research for those from underrepresented backgrounds.

In 2020, Jetter made what she admitted was a hard decision. “I decided to leave aerospace in order to be able to innovate faster and to see the fruits of innovation sooner.” She knew that kind of opportunity existed at Amazon, and joined the company in January 2021 to work with the robotics team.

“While I thought that I was making a decision to leave aerospace, I was actually making a decision to expand my expertise in autonomy and AI. So much of the work that I do now is enabled by my aerospace foundation. What excites me about robotics and artificial intelligence at Amazon is the opportunity to truly change the game, change how we do things for an additional set of customers,” Jetter said.

Blazing a trail

As a leader in AI and robotics, Jetter says many people approach her with interest in pursuing a similar path, asking whether they can emulate her. Many of those who approach her have what is for her a familiar experience: a lack of exposure.

“This has inspired me because I am often approached by people who clearly have the aptitude but have not been exposed to a mechanism — including tools they need to progress down the path. Sometimes they just need exposure to people who look like them going down the path. As a result, in addition to building a solid tech foundation, when mentoring I focus on exposure, encouragement, and helping people see things that they might not see in themselves.”

That’s also why diversity matters for human beings solving complex science and engineering problems. If you have diverse perspectives in the room, you can arrive at the optimal solution for the target customer faster.
Nia Jetter

To lower the barriers to entry, Jetter makes time to provide guidance to others. She does this in a number of ways, including small group mentoring sessions that she calls “Shades of Tech”. In addition, earlier this year Jetter spearheaded the Amazon in the City Responsible AI Panel with support from Amazon’s Inclusive Experiences and Technology team. The event brought together “leaders from within and outside Amazon to share perspectives on the importance of fairness in tech as AI-based technology is developed and deployed.”

Along with Jetter, attendees heard from Nashlie Sephus, principal AI/ML evangelist with Amazon Web Services; Chad Jenkins, associate chair of undergraduate studies and professor of robotics at the University of Michigan; and Nii Simmonds, non-resident fellow at the Center For Global Development. The panelists spoke about responsible AI and the impact of diversity in the workforce.

Jetter drew on her own past experiences when pondering the initiative.

“There are certain types of optimization algorithms where, when you're optimizing, you get to a point at which you're actually converging on a local solution, as opposed to the global solution. And in order to get to the global solution, you actually need to inject variety – you have to inject diversity in your dataset.

“That’s also why diversity matters for human beings solving complex science and engineering problems. If you have diverse perspectives in the room, you can arrive at the optimal solution for the target customer faster.”

What is artificial intelligence?

In another effort to expand access, Jetter created a series of YouTube videos explaining automation and artificial intelligence called “Thinque Bytes.”

“I feel very fortunate to be where I am today. I want to provide exposure to enable as many people as possible who might not have easy access to the knowledge and the technology to learn and eventually have impact in these fields.”

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in ML modeling and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As a Sr. Applied Scientist in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal, RL). - Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in MLOps. - Design and lead roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
US, CA, Sunnyvale
Our team leads the development and optimization of on-device ML models for Amazon's hardware products, including audio, vision, and multi-modal AI features. We work at the critical intersection of ML innovation and silicon design, ensuring AI capabilities can run efficiently on resource-constrained devices. Currently, we enable production ML models across multiple device families, including Echo, Ring/Blink, and other consumer devices. Our work directly impacts Amazon's customer experiences in consumer AI device market. The solutions we develop determine which AI features can be offered on-device versus requiring cloud connectivity, ultimately shaping product capabilities and customer experience across Amazon's hardware portfolio. This is a unique opportunity to shape the future of AI in consumer devices at unprecedented scale. You'll be at the forefront of developing industry-first model architectures and compression techniques that will power AI features across millions of Amazon devices worldwide. Your innovations will directly enable new AI features that enhance how customers interact with Amazon products every day. Come join our team! Key job responsibilities As a Principal Applied Scientist, you will: • Own the technical architecture and optimization strategy for ML models deployed across Amazon's device ecosystem, from existing to yet-to-be-shipped products. • Develop novel model architectures optimized for our custom silicon, establishing new methodologies for model compression and quantization. • Create an evaluation framework for model efficiency and implement multimodal optimization techniques that work across vision, language, and audio tasks. • Define technical standards for model deployment and drive research initiatives in model efficiency to guide future silicon designs. • Spend the majority of your time doing deep technical work - developing novel ML architectures, writing critical optimization code, and creating proof-of-concept implementations that demonstrate breakthrough efficiency gains. • Influence architecture decisions impacting future silicon generations, establish standards for model optimization, and mentor others in advanced ML techniques.
US, CO, Boulder
The Advertising Incrementality Measurement (AIM) team is looking for an Applied Scientist II with experience in causal inference, experimentation, and ML development to help us expand our causal modeling solutions for understanding advertising effectiveness. Our work is foundational to providing customer-facing experimentation tools, furthering internal research & development, and building out Amazon's new Multi-Touch Attribution (MTA) measurement offerings. Incrementality measurement is a lynchpin for the next generation of Amazon Advertising measurement solutions and this role will play a key role in the release and expansion of these offerings. Key job responsibilities * Partner with economists and senior team members to drive science improvements and implement technical solutions at the state-of-the-art of machine learning and econometrics * Partner with engineering and other science collaborators to design, implement, prototype, deploy, and maintain large-scale causal ML models. * Carry out in-depth research and analysis exploring advertising-related data sets, including large sets of real-world experimental data, to understand advertiser behavior, highlight model improvement opportunities, and understand shortcomings and limitations. * Define data quality standards for understanding typical behavior, capturing outliers, and detecting model performance issues. * Work with product stakeholders to help improve our ability to provide quality measurement of advertising effectiveness for our customers. About the team AIM is a cross disciplinary team of engineers, product managers, economists, data scientists, and applied scientists with a charter to build scientifically-rigorous causal inference methodologies at scale. Our job is to help customers cut through the noise of the modern advertising landscape and understand what actions, behaviors, and strategies actually have a real, measurable impact on key outcomes. The data we produce becomes the effective ground truth for advertisers and partners making decisions affecting $10s to $100s of millions in advertising spend.
US, WA, Seattle
The Measurement, Ad Tech, and Data Science (MADS) team at Amazon Ads is at the forefront of developing cutting-edge solutions that help our tens of millions of advertisers understand the value of their ad spend while prioritizing customer privacy and measurement quality. We develop cutting-edge deterministic algorithms, machine learning models, causal models, and statistical approaches to empower advertisers with insights on the effectiveness of their ads in guiding customers from awareness to purchases. Our insights help advertisers build full-funnel advertising strategies. We maximize the information we extract from incomplete traffic signals and alternative sources to capture the impact of their ad spending for both Amazon recognized and anonymous traffic. Our vision is to lead the industry in extracting and combining information from several sources to enable advertisers to optimize their return on their ad spend. As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities * Lead the development of ad measurement models and solutions that address the full spectrum of an advertiser's investment, focusing on scalable and efficient methodologies. * Collaborate closely with cross-functional teams including engineering, product management, and business teams to define and implement measurement solutions. * Use state-of-the-art scientific technologies including Generative AI, Classical Machine Learning, Causal Inference, Natural Language Processing, and Computer Vision to develop cutting-edge models that measure the impact of ad spend across multiple platforms and timescales. * Drive experimentation and the continuous improvement of ML models through iterative development, testing, and optimization. * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Foster collaborations between scientists to move faster, with broader impact. * Regularly engage with the broader scientific community with presentations, publications, and patents. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate business insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the advertising organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Team video https://advertising.amazon.com/help/G4LNN5YWHP6SM9TJ