Nia Jetter, senior principal technologist for Amazon Fulfillment Technology Robotics, is seen speaking into a mic near a stand with an open laptop on it
Nia Jetter, senior principal technologist for Amazon Fulfillment Technology Robotics, is working on improving components of Amazon’s delivery operations by focusing on embedding best practices into the design process.

From aerospace to Amazon, Nia Jetter is blazing new paths

Jetter says her goals include lowering barriers to understanding technology and cultivating a more diverse workforce.

“I work in robotics and artificial intelligence. We're building robots that are going to help the world.” As introductions — or elevator pitches — go, that’s an especially strong one.

That’s how Nia Jetter, senior principal technologist for Amazon Fulfillment Technology Robotics, answers the question: What do you do?

Jetter is an engineer who has been recognized throughout her career for her accomplishments in autonomous systems, so her confidence is earned. Her goals extend beyond developing new algorithms, and include lowering barriers to understanding technology and cultivating a more diverse workforce.

“At Amazon, I am working on laying a foundation for how we build collaborative autonomous systems safely across our robotics platforms,” Jetter notes. “I’m also working on forward looking research on ways to architect and develop safety critical autonomous systems in a way that is verifiable while leveraging techniques like machine learning.”

Jetter’s work is centered on improving components of Amazon’s delivery operations by focusing on embedding best practices into the design process. She believes automation, achieved with artificial intelligence and next-generation robots, can deliver improvements for both Amazon employees and customers.

Robotics research at Amazon
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

“People want their packages quickly, including me,” she says with a laugh. “So, when you look at our fulfillment centers, I'm hugely passionate about: What are the ways that we can help my colleagues working there? How can we help our customers?”

To that end, Jetter, along with other scientists and engineers within her organization, is analyzing activities that could be more easily and safely accomplished with robots. In order to support this work, her team and others across Amazon collaborate with a variety of universities, including the University of Washington. Jetter sits on the advisory board for the UW-Amazon Science Hub and also serves as an Amazon research liaison.

“We are working on developing solutions to challenges faced across multiple industries and are working to do so in a scalable fashion by developing in a way that supports modularity. There is a lot of space for innovation in safe autonomy, AI, and robotics,” she said. “I am passionate about pursuing research that can be inserted into products in that space.”

An early love for learning

Jetter displayed engineering talent from a young age.

As a second grader she would find scrap insulated wire at the base of utility poles, and would save quarters given to her by her grandfather for small chores to buy LEDs, light bulbs, and batteries from RadioShack. Her father, a mail carrier, would help her find books that explained electrical circuits. While in elementary school, she used a piece of foam core and her RadioShack purchases to create an illuminated Valentine’s Day card for her science teacher.

Her path shifted toward computer programming while she was still in elementary school. She took a computer class and said her interest was immediately piqued. She began spending her spare moments in the computer room writing programs in HyperCard, soon followed by Fortran, Pascal, and C.

“I loved programming at school,” she says. “I would go on my lunch hour and stay after school. Looking back, while at the time I did not think of it as something I would do for a career, I realize I was good at it.”

In high school, she received a letter from MIT encouraging her to apply to the MIT Introduction to Technology, Engineering, and Science (MITES) program. At the time, the program took 50 high school students and brought them to campus to take intense science and engineering classes and to familiarize them with the institute.

He didn’t see me as a black girl who was good at math. He saw me as a mathematician. That meant the world to me.
Nia Jetter

Jetter said the magnitude of the potentially life-changing opportunity was not immediately evident to her, namely because she had never heard of MIT. “Little did I realize that that letter, and attending the MITES program, would become a significant part of my origin story as an engineer,” she noted.

Her experience with MITES led directly to enrolling at MIT. She intended to study biochemical engineering, but while there she was exposed to more advanced math and computer science classes and found that she loved them. Her career path was set when, in her sophomore year, she took an artificial intelligence class with the late Patrick Henry Winston, her future mentor and then director of the MIT Artificial Intelligence Laboratory.

“There are several points in my journey where I met people who saw more in me than I saw in myself, people who filled a gap for me through exposure to what was possible. Professor Winston saw me as a scientist and a mathematician first, and encouraged me to push the envelope and be all that I could be.

Nia Jetter is seen sitting in a chair with a telescope on a stand in front of her and windows behind her, she is smiling into the camera
Nia Jetter said her career path was set when she took an artificial intelligence class with the late Patrick Henry Winston. “Professor Winston saw me as a scientist and a mathematician first, and encouraged me to push the envelope and be all that I could be."

“He didn’t see me as a black girl who was good at math. He saw me as a mathematician. That meant the world to me,” Jetter says.

A lifelong science fiction fan, Jetter also set her sights on working for NASA. She interned there for three summers.

“When I was on the atmospheric experiments team, I recognized that their algorithms could be improved. I’m not sure they took the suggestion from an intern seriously, but I wrote a paper explaining what I saw, and I gave it to the department head,” she recalled. “The next Monday, he came into the office and told me to get started.

“What I learned from my NASA internships was the value of being a mathematician or a computer scientist. I learned that every team needs a computer scientist.”

Before her graduation from MIT in 2000, a chance encounter with a recruiter from Hughes Space and Communications (acquired in October 2000 by Boeing) convinced her to work there on a project involving automated controls. Although she had some early challenges, she quickly realized she could solve those by drawing on her own experiences.

“I derived mathematical models and eventually I was asked to ‘Derive the gains for the controller.’ At the time I had no idea what that meant. I was fortunate to be taught by leaders in the field and quickly learned that a controller is very analogous to an intelligent agent in how it needs to perceive, make decisions and act on its environment. That work led me to enroll at Stanford in 2005 to get a master’s degree in aeronautical and astronautical engineering while I worked at Boeing.”

A milestone moment

In 2013, her work at Boeing led to her being honored as a Boeing associate technical fellow – the first tier of the Technical Fellowship. At the Boeing facility in El Segundo, California, in what is called the “hall of flags,” there is a wall with photos of the Boeing technical fellows.

“From when I first saw the wall, I knew that one day my face would be on it. I’ll never forget the day I walked down the hall and my photo was up! I was the first black woman with my face on the wall at my site. I didn’t realize the photo would mean so much to me, but when I first saw it on the wall, it really stood out.”

Diversity, equity, and inclusion
Program is aimed at expanding participation in operations research, management science, and analytics research for those from underrepresented backgrounds.

In 2020, Jetter made what she admitted was a hard decision. “I decided to leave aerospace in order to be able to innovate faster and to see the fruits of innovation sooner.” She knew that kind of opportunity existed at Amazon, and joined the company in January 2021 to work with the robotics team.

“While I thought that I was making a decision to leave aerospace, I was actually making a decision to expand my expertise in autonomy and AI. So much of the work that I do now is enabled by my aerospace foundation. What excites me about robotics and artificial intelligence at Amazon is the opportunity to truly change the game, change how we do things for an additional set of customers,” Jetter said.

Blazing a trail

As a leader in AI and robotics, Jetter says many people approach her with interest in pursuing a similar path, asking whether they can emulate her. Many of those who approach her have what is for her a familiar experience: a lack of exposure.

“This has inspired me because I am often approached by people who clearly have the aptitude but have not been exposed to a mechanism — including tools they need to progress down the path. Sometimes they just need exposure to people who look like them going down the path. As a result, in addition to building a solid tech foundation, when mentoring I focus on exposure, encouragement, and helping people see things that they might not see in themselves.”

That’s also why diversity matters for human beings solving complex science and engineering problems. If you have diverse perspectives in the room, you can arrive at the optimal solution for the target customer faster.
Nia Jetter

To lower the barriers to entry, Jetter makes time to provide guidance to others. She does this in a number of ways, including small group mentoring sessions that she calls “Shades of Tech”. In addition, earlier this year Jetter spearheaded the Amazon in the City Responsible AI Panel with support from Amazon’s Inclusive Experiences and Technology team. The event brought together “leaders from within and outside Amazon to share perspectives on the importance of fairness in tech as AI-based technology is developed and deployed.”

Along with Jetter, attendees heard from Nashlie Sephus, principal AI/ML evangelist with Amazon Web Services; Chad Jenkins, associate chair of undergraduate studies and professor of robotics at the University of Michigan; and Nii Simmonds, non-resident fellow at the Center For Global Development. The panelists spoke about responsible AI and the impact of diversity in the workforce.

Jetter drew on her own past experiences when pondering the initiative.

“There are certain types of optimization algorithms where, when you're optimizing, you get to a point at which you're actually converging on a local solution, as opposed to the global solution. And in order to get to the global solution, you actually need to inject variety – you have to inject diversity in your dataset.

“That’s also why diversity matters for human beings solving complex science and engineering problems. If you have diverse perspectives in the room, you can arrive at the optimal solution for the target customer faster.”

What is artificial intelligence?

In another effort to expand access, Jetter created a series of YouTube videos explaining automation and artificial intelligence called “Thinque Bytes.”

“I feel very fortunate to be where I am today. I want to provide exposure to enable as many people as possible who might not have easy access to the knowledge and the technology to learn and eventually have impact in these fields.”

Research areas

Related content

US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.