Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in artificial intelligence and related fields.
437 results found
  • US, WA, Seattle
    Job ID: 2773266
    (Updated 16 days ago)
    Lead the development of cutting-edge AI models to power Amazon's eCommerce ontology - the authoritative source of product knowledge driving exceptional customer experiences. Applied Scientists in this role solve problems related to product classification, attribute extraction, ontology modeling, data integration and enrichment, and scalable knowledge services. It's challenging due to the vast scale, heterogeneous data sources, and evolving domains, but exciting for pushing boundaries in ML, NLP, and knowledge representation research. If you're passionate about driving innovation at scale, we want to hear from you! Key job responsibilities - Lead the research and development of novel AI solutions to enrich and curate Amazon's product ontology (Product Knowledge) at scale - Develop scalable data processing pipelines and architectures to ingest, transform, and enrich product data from various sources (seller listings, customer reviews, etc.) - Collaborate with engineers to design and implement robust services - Work closely with product managers, stakeholders, and subject matter experts to identify opportunities for innovation and drive the roadmap for Product Knowledge - Mentor and upskill junior scientists and engineers, fostering a culture of continuous learning and knowledge sharing - Communicate complex technical concepts and research findings effectively to diverse audiences, including leadership, cross-functional teams, and the wider scientific community - Stay up-to-date with the latest advancements in machine learning, natural language processing, knowledge representation, and related fields, and identify opportunities to apply them to Product Knowledge A day in the life The Amazon product ontology is a structured knowledge base representing product types, attributes, classes, and relationships. It standardizes product data, enabling enhanced customer experiences through improved search and recommendations, streamlined selling processes, and internal data enrichment across Amazon's eCommerce ecosystem. You will work with following stakeholders: - Product Managers represent customer experiences and selling partner experiences - Category Leaders (e.g., apparel, electronics) provide domain knowledge and guidance as subject matter experts - Engineers build and maintain data pipelines and services in production - Ontologists design data models and define guidelines - Other Applied Scientists collaborate on research and innovation About the team The Product Knowledge team at Amazon is dedicated to creating the industry-standard eCommerce product and services ontology. Our diverse team of applied scientists, engineers, ontologists and subject matter experts build a comprehensive ontology enabling exceptional customer and selling partner experiences through high-quality, contextual product knowledge at scale.
  • US, WA, Bellevue
    Job ID: 2778733
    (Updated 16 days ago)
    Amazon’s Last Mile Team is looking for a passionate individual with strong optimization and analytical skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. Optimizing the last mile delivery requires deep understanding of transportation, supply chain management, pricing strategies and forecasting. Only through innovative and strategic thinking, we will make the right capital investments in technology, assets and infrastructures that allows for long-term success. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing solutions to better manage and optimize delivery capacity in the last mile network. The successful candidate should have solid research experience in one or more technical areas of Operations Research or Machine Learning. These positions will focus on identifying and analyzing opportunities to improve existing algorithms and also on optimizing the system policies across the management of external delivery service providers and internal planning strategies. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. To support their proposals, candidates should be able to independently mine and analyze data, and be able to use any necessary programming and statistical analysis software to do so. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. As an applied scientist, you will also help coach/mentor junior scientists in the team.
  • (Updated 16 days ago)
    Are you interested in the world's largest Cloud Network? Are you interested in applying new methods to extremely hard problems such as anomaly detection to have a lasting impact on business? Do you want to play a key role in the future of AWS's infrastructure? Come and join us! The Fleet Orchestration and Release Automation team is looking for an Applied Scientist Scientists to join our team. Our team owns multiple services that drive the decision-making behind the world's largest Network, and we are looking for excellent Scientists that can help us answer tough and ambiguous questions. Working collaboratively, you will improve and develop solutions to complex problems, such as identifying anomalies in the Network performance across Data-Centers worldwide, or automating the monitoring process of production network after OS or configuration deployments. You will work with a team of Engineers among others to test your solutions and push them into production so the business can meet its goals. You will be the POC for Science based innovation in the org. AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. A day in the life You must ensure our solutions meet the needs of our most important customers. You will work with customers to gather requirements, understand the space and impact, generate and test end-to-end proposals to carry the project through all the development stages. You’ll develop algorithms that enable Network Engineers to develop, monitor and operate robust, high-quality networks safely, securely, and reliably deploy it. You will have an opportunity to work directly with complex and high volume data and models to analyze network performance intelligently. You will use your strong leadership and communication skills to educate other team members, provide training and support for our products/models/technologies. You will have access to senior leadership and engineering staff. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
  • (Updated 35 days ago)
    Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
  • IN, KA, Bengaluru
    Job ID: 2759531
    (Updated 73 days ago)
    Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
  • (Updated 16 days ago)
    Have you ever wondered how Amazon predicts when your order will arrive and how we ensure that it actually arrives on at the promised date/time? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's logistics network including our planes, trucks, and vans sound exciting to you? If so, then we want to talk with you! At Amazon's Supply Chain Optimization Technologies (SCOT), we are tasked with optimizing the fulfilment on customer orders so that we fulfil all orders worldwide in the most intelligent manner while ensuring Amazon customers get their orders on time. Amazon Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfilment Optimization group is seeking Manager Research Science with expertise in Machine Learning and/or Optimization and a proven record of leading scientists and solving business problems through scalable ML solutions. FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide. We own Amazon’s global fulfilment center and transportation planning and execution. The team also owns the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfilment network. This includes developing sophisticated math models and controllers that assign orders to fulfilment centers to be picked and packed and then planning the optimal ship method in terms of cost, speed and carbon impact to deliver to the customer. These plans drive downstream decisions that are in the billions of dollars at Amazon Scale worldwide. The systems we build are entirely in-house, and are on the cutting edge of both academic and applied research in large scale supply chain planning, optimization, machine learning and statistics. These systems operate at various scales, from real-time decision system that completes thousands of transactions per seconds, to large scale distributed system that optimize Amazon’s fulfilment network. As Amazon continues to build and expand the first party delivery network, this role will be critical to realize this vision. Your team and tech solution will have large impacts to the physical supply chain of Amazon, and play a key role in improving Amazon consumer business’s long-term profitability. If you are interested in diving into a multi-discipline, high impact space this is the team for you. We’re looking for a passionate, results-oriented, and inventive Scientist who can lead from the front towards developing and deploying ML models for our outbound transportation planning systems. In addition, you will be working on design, development and evaluation of highly innovative ML models for solving complex business problems in the area of outbound transportation planning systems. The position is located at Bellevue, WA, just next to Seattle with beautiful outdoors and great city life. Watch http://bit.ly/amazon-scot to get the big picture. Key job responsibilities As a Manager of Research Science within FPX Science team, you will lead a team of research and applied scientists towards designing and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. You will have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry, with some of the best product managers, research scientists, statisticians, and software engineers to integrate scientific work into production systems. You will bring deep technical expertise in the area of Machine Learning, and will play an integral part in building Amazon's Fulfillment Optimization systems. Other responsibilities include: * Lead a team of research and applied scientists towards design, development and evaluation of highly innovative ML models for solving complex business problems. * Technically lead and mentor the scientists on the team. * Research and apply the latest ML techniques and best practices from both academia and industry. * Use and analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life In this critical role, you will be a technical leader in operations research or machine learning with significant scope, impact, and visibility. Your solutions have the potential to drive billions of dollars in impact for Amazon's supply chain globally. As a science manager on the team, you will engage in all facets of the process from ideation, business analysis and scientific research to development and deployment of advanced models. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. A successful candidate is able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their team, and their career. About the team Fulfillment Planning & Execution Science team contains a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports critical functional areas across Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We tackle some of the most mathematically complex challenges in facility and transportation planning and execution to improve Amazon's operational efficiency worldwide and at a scale that is unique to Amazon. We often seek the opportunity of applying hybrid techniques in the space of Operations Research and Machine Learning to tackle some of our biggest technical challenges. We disambiguate complex supply chain problems and create ML and optimization solutions to solve those problems at scale.
  • US, CA, Sunnyvale
    Job ID: 2762609
    (Updated 16 days ago)
    As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers.
  • US, WA, Bellevue
    Job ID: 2742838
    (Updated 16 days ago)
    We are a part of Amazon Artificial General Intelligence (AGI) organization where our mission is “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing advanced systems to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of Natural Language Processing (NLP), Large Language Model (LLM), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware personal assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with applied scientists and engineers to develop novel algorithms and modeling techniques to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learing, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
  • US, WA, Bellevue
    Job ID: 2742859
    (Updated 16 days ago)
    We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
  • US, CA, San Diego
    Job ID: 2748770
    (Updated 16 days ago)
    Amazon.com’s Buyer Risk Prevention's (BRP) mission is to make Amazon the safest and most trusted place worldwide to transact online. BRP safeguards every financial transaction across all Amazon sites. As such, BRP designs and builds the software systems, risk models, and operational processes that minimize risk and maximize trust in Amazon.com. The BRP organization is looking for an Applied Scientist for the Buyer Abuse team, whose mission is to combine advanced analytics with investigator insight to create mechanisms to proactively and reactively reduce the impact of abuse across Amazon. Key job responsibilities As an Applied Scientist, you will be responsible for modeling complex problems, discovering insights, and building cutting edge risk algorithms that identify opportunities through statistical models, machine learning, and visualization techniques to improve operational efficiency and reduce monetary losses and improve customer trust. You will need to collaborate effectively with business and product leaders within BRP and cross-functional teams to build scalable solutions against high organizational standards. The candidate should be able to apply a breadth of tools, data sources, and ML techniques to answer a wide range of high-impact business questions and proactively present new insights in concise and effective manner. The candidate should be an effective communicator capable of independently driving issues to resolution and communicating insights to non-technical audiences. This is a high impact role with goals that directly impacts the bottom line of the business. Responsibilities: - Invent, implement, and deploy state of the art machine learning algorithms and systems - Build prototypes and explore conceptually new solutions - Define and conduct experiments to validate/reject hypotheses, and communicate insights and recommendations to Product and Tech teams - Take ownership of how ML solutions impact Amazon resources and Customer experience - Develop efficient data querying infrastructure for both offline and online use cases - Collaborate with cross-functional teams from multidisciplinary science, engineering and business backgrounds to enhance current automation processes - Learn and understand a broad range of Amazon’s data resources and know when, how, and which to use and which not to use. - Research and implement novel machine learning and statistical approaches - Maintain technical document and communicate results to diverse audiences with effective writing, visualizations, and presentations Please visit https://www.amazon.science for more information

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.