Search results

18,482 results found
  • Srujan Meesala, Jash Banker, Steven Wood, Alp Sipahigil, David Lake, Piero Chiappina, Andrew Beyer, Matthew Shaw, Oskar Painter
    CLEO 2021
    2021
    Decoherence and noise from optical absorption in superconducting circuits hinder development of microwave to optical quantum transducers. Addressing these issues, we fabricate niobium-based resonators and qubits, and study them under laser illumination at milliKelvin temperatures.
  • Matthew Ware, Guilhem Ribeill, Diego Ristè, Colm A. Ryan, Blake R. Johnson, Marcus P. da Silva
    Physical Review A
    2021
    The promise of quantum computing with imperfect qubits relies on the ability of a quantum computing system to scale cheaply through error correction and fault tolerance. While fault tolerance requires relatively mild assumptions about the nature of qubit errors, the overhead associated with coherent and non-Markovian errors can be orders of magnitude larger than the overhead associated with purely stochastic
  • Chiao-Hsuan Wang, Kyungjoo Noh, José Lebreuilly, S.M. Girvin, Liang Jiang
    Physical Review Applied
    2021
    Cavity resonators are promising resources for quantum technology, while native nonlinear interactions for cavities are typically too weak to provide the level of quantum control required to deliver complex targeted operations. Here we investigate a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits. By off resonantly driving dispersively coupled ancilla qubits, we develop
  • Eunjong Kim, Xueyue Zhang, Vinicius S. Ferreira, Jash Banker, Joseph K. Iverson, Alp Sipahigil, Miguel Bello, Alejandro González-Tudela, Mohammad Mirhosseini, Oskar Painter
    Physical Review X
    2021
    While designing the energy-momentum relation of photons is key to many linear, nonlinear, and quantum optical phenomena, a new set of light-matter properties may be realized by employing the topology of the photonic bath itself. In this work we experimentally investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model
  • Zijun Chen , Kevin J. Satzinger, Juan Atalaya, Alexander Alexandrov, Andrew Dunsworth , Daniel Sank , Chris Quintana , Matt McEwen, Rami Barends, Paul V. Klimov, Sabrina Hong , Cody Jones , Andre Petukhov, Dvir Kafri, Sean Demura, Brian Burkett, Craig Gidney, Austin G. Fowler, Alexandru Paler, Harald Putterman, Igor Aleiner, Frank Arute , Kunal Arya , Ryan Babbush , Joseph C. Bardin, Andreas Bengtsson, Alexandre Bourassa, Michael Broughton, Bob B. Buckley , David A. Buell, Nicholas Bushnell, Benjamin Chiaro, Roberto Collins, William Courtney, Alan R. Derk, Daniel Eppens, Catherine Erickson, E. Farhi, Brooks Foxen, Marissa Giustina, Ami Greene, Jonathan Gross, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho , Trent Huang, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Kostyantyn Kechedzhi, Seon Kim, Alexei Kitaev, Fedor Kostritsa, David Landhuis, Pavel Laptev, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Xiao Mi, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O’Brien, Alex Opremcak, Eric Ostby, Bálint Pató, Nicholas Redd, Pedram Roushan, Nicholas C. Rubin, Vladimir Shvarts, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao , Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Boixo, Vadim Smelyanskiy, Yu Chen, Anthony Megrant, Julian Kelly
    Nature
    2021
    Realizing the potential of quantum computing requires sufficiently low logical error rates(1). Many applications call for error rates as low as 10⁻¹⁵ (refs. 2,3,4,5,6,7,8,9), but state-of-the-art quantum platforms typically have physical error rates near 10⁻³ (refs. 10,11,12,13,14). Quantum error correction(15,16,17) promises to bridge this divide by distributing quantum logical information across many
  • Jasminder S. Sidhu, Yingkai Ouyang, Earl Campbell, Pieter Kok
    Physical Review X
    2021
    The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables greatly diminishes the applicability of estimation theory in many practical implementations. The Holevo Cramér-Rao bound (HCRB) provides the most fundamental, simultaneously attainable
  • Andrew Patterson, Hongxiang Chen, Leonard Wossnig, Simone Severini, Dan Browne, Ivan Rungger
    Physical Review Research
    2021
    Near-term quantum computers are noisy, and therefore must run algorithms with a low circuit depth and qubit count. Here we investigate how noise affects a quantum neural network (QNN) for state discrimination, which is applicable on near-term quantum devices as it fulfils the above criteria. We find that for the required gradient calculation on a noisy device a quantum circuit with a large number of parameters
  • KDD 2021 Workshop on Multi-Armed Bandits and Reinforcement Learning (MARBLE)
    2021
    In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence. Different from general sequential decision making process, the use cases have a simpler flow where customers per seeing recommended content on each page can only return feedback as moving forward in the process or dropping from it until a termination state. We refer to this
  • KDD 2021 Workshop on Data-Efficient Machine Learning
    2021
    Query rewriting (QR) is an increasingly important technique for reducing user friction in a conversational AI system. User friction is caused by various reasons, including errors in automatic speech recognition (ASR), natural language understanding (NLU), entity resolution (ER) component, or users’ slip of the tongue. In this work, we propose a search-based self-learning QR framework: User Feedback Search
  • Khalil Mrini, Can Liu, Markus Dreyer
    NewSum EMNLP 2021 Workshop on New Frontiers in Summarization
    2021
    We consider the problem of topic-focused abstractive summarization, where the goal is to generate an abstractive summary focused on a particular topic, a phrase of one or multiple words. We hypothesize that the task of generating topic-focused summaries can be improved by showing the model what it must not focus on. We introduce a deep reinforcement learning approach to topic-focused abstractive summarization
  • Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, Philip S. Yu
    NeurIPS 2021
    2021
    We introduce a conceptually simple yet effective model for self-supervised representation learning with graph data. It follows the previous methods that generate two views of an input graph through data augmentation. However, unlike contrastive methods that focus on instance-level discrimination, we optimize an innovative feature-level objective inspired by classical Canonical Correlation Analysis. Compared
  • Information Retrieval Journal
    2021
    A key application of conversational search is reining a user’s search intent by asking a series of clarification questions, aiming to improve the relevance of search results. Training and evaluating such conversational systems currently requires human participation, making it infeasible to examine a wide range of user behaviors. To support robust training/evaluation of such systems, we propose a simulation
  • Iulia Bastys, Pauline Bolignano, Franco Raimondi, Daniel Schoepe
    FPS 2021
    2021
    The problem of confidential information leak can be addressed by using automatic tools that take a set of annotated inputs (the source) and track their flow to public sinks. Unfortunately, manually annotating the code with labels specifying the secret sources is one of the main obstacles in the adoption of such trackers. In this work, we present an approach for the automatic generation of labels for confidential
  • IEEE BigData 2021
    2021
    Natural language understanding (NLU) is one of the most critical components in goal-oriented dialog systems and enables innovative Big Data applications such as intelligent voice assistants (IVA) and chatbots. While recent advances in deep learning-based NLU models have achieved significant improvements in terms of accuracy, most existing works are monolingual or bilingual. In this work, we propose and
  • Lukas Balles, Giovanni Zappella, Cédric Archambeau
    NeurIPS 2021 Workshop on Distribution Shifts
    2021
    We devise a coreset selection method based on the idea of gradient matching: the gradients induced by the coreset should match, as closely as possible, those induced by the original training dataset. We evaluate the method in the context of continual learning, where it can be used to curate a rehearsal memory. Our method performs strong competitors such as reservoir sampling across a range of memory sizes
  • Qingru Zhang, David Wipf, Quan Gan, Le Song
    NeurIPS 2021
    2021
    Graph neural networks (GNN) have recently emerged as a vehicle for applying deep network architectures to graph and relational data. However, given the increasing size of industrial datasets, in many practical situations the message passing computations required for sharing information across GNN layers are no longer scalable. Although various sampling methods have been introduced to approximate full-graph
  • Anmol Bansal, Anjali Shenoy, Chaitanya P. K., Kay Rottmann, Anurag Dwarakanath
    ICNLP 2021
    2021
    Fine-tuning self-supervised pre-trained language models such as BERT has significantly improved state-of-the-art performance on natural language processing tasks. Similar finetuning setups can also be used in commercial large scale Spoken Language Understanding (SLU) systems to perform intent classification and slot tagging on user queries. Finetuning such powerful models for use in commercial systems requires
  • Moukthika Yerramilli, Pritam Varma, Anurag Dwarakanath
    ICON 2021
    2021
    Building machine learning models for low resource languages is extremely challenging due to the lack of available training data (either un-annotated or annotated). To support such scenarios, zero-shot cross lingual transfer is used where the machine learning model is trained on a resource rich language and is directly tested on the resource poor language. In this paper, we present a technique which improves
  • Song Zhang, Amritanshu Pandey, Xiaochuan Luo, Maggy Powell, Ranjan Banerji, Abhineet Parchure, Lei Fan, Edgardo Luzcando
    IEEE Xplore
    2021
    This report explains why cloud computing supports a variety of power system businesses and summarizes the latest cloud adoption use cases in the power industry. It includes the benefits and risks of moving to the cloud while suggesting risk mitigation strategies at t he same time. It also provides valuable guidelines and suggestions for power industry professionals who are considering cloud solutions yet
  • Di Jin, Shuyang Gao, Seokhwan Kim, Yang Liu, Dilek Hakkani-Tür
    IEEE/ACM Transactions on Audio, Speech, and Language Processing
    2021
    In many real-world settings, machine learning models need to identify user inputs that are out-of-domain (OOD) so as to avoid performing wrong actions. This work focuses on a challenging case of OOD detection, where no labels for in-domain data are accessible (e.g., no intent labels for the intent classification task). To this end, we first evaluate different language model based approaches that predict
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About the Role Platforms & Services is responsible for the central services and systems that empower both Twitch users directly as well as the product engineers across Twitch who build experiences for them. You will be part of a team of data scientists who focus on providing deep product and user insights that drive engineering roadmaps, priorities, and investments. You will partner closely with product managers, engineering leaders, and engineers to build deep product expertise and will become a critical voice in the development and delivery of some of Twitch’s most critical central services. You can work in San Francisco, CA; Irvine, CA; New York, NY; or Seattle, WA. About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You Will - Collaborate with product, engineering, and operations teams to design durable systems that support all of Twitch - Tackle ambiguous, high-impact problems by defining analytical approaches grounded in statistics, computer science, and deep domain expertise—driving clarity, innovation, and durable solutions at scale - Become a key thought partner in shaping builder experiences, providing data-backed insights to support higher-quality and more efficient experiences for builders across Twitch - Foster a culture of analytical rigor, clear communication, and shared accountability for impact across cross-functional teams. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers and stakeholders, and ensure that the teams and programs are empowered and enabled to take data-driven actions - Prioritize and execute in the face of ambiguity, work with stakeholders and mentors to distill the problem, adapt tools to answer complicated questions, and identify the trade-offs between speed and quality of different approaches - Create analytical frameworks to measure team success by partnering with cross-functional teams to define success metrics, create approaches to track the data and troubleshoot errors, quantify and evaluate the data to develop a common language for all colleagues to understand these metrics and KPIs - Operationalize data processes in order to provide stakeholders with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, CA, Sunnyvale
Our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Senior Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services .
US, CA, Santa Clara
The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: * AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization * Machine Learning Compiler: Creating advanced compiler techniques for ML workloads * System Robustness: Building tools for accuracy and reliability validation * Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
We are looking for a Senior Applied Scientist who will lead the technical vision and innovation in revolutionizing how product managers, program managers, and business analysts work with artificial intelligence. You will be part of the Amazon AI at Work (AIW) team building the next generation of AI agents that transform how business professionals operate and reshape the future of hybrid (AI + human) work. As a Senior Applied Scientist, you are a recognized technical leader who drives the scientific strategy, mentors team members, and partners with cross-functional teams to deliver complex end-to-end AI solutions. Your work focuses on identifying and framing new research challenges in ambiguous problem areas where both the business problem and solution approach need to be defined. The problems you tackle require significant scientific innovation at the product level. Key job responsibilities • Design and architect complex AI agent systems for business and product management workflows at scale • Define and lead research initiatives in human-AI collaboration frameworks across multiple teams • Drive end-to-end delivery of novel AI solutions from inception to production, ensuring system-level technical requirements are met • Lead technical discovery and innovation through rapid experimentation while maintaining high standards • Mentor junior scientists and influence adoption of scientific best practices across teams • Author technical documentation and research papers that advance the field of AI agents The ideal candidate combines deep technical expertise with strong business acumen and thrives in ambiguous, fast-paced environments. You should be passionate about creating AI solutions that enhance human capabilities and comfortable working in a startup-like atmosphere while maintaining high standards for responsible AI development. A day in the life You take ownership of the long-term scientific vision, product roadmaps, and technologies, defining how they should evolve. You build consensus through thoughtful discussions with stakeholders, engineers, and scientist peers across multiple teams. You bring deep expertise to provide context for current and future technology choices and make strategic recommendations on modeling approaches and system architecture to achieve transformative business outcomes and user experiences. About the team As part of the AWS Applied AI Solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
We are looking for an Applied Scientist who is passionate about revolutionizing how product managers, program managers, and business analysts work with artificial intelligence. You will be part of the Amazon AI at Work (AIW) team building the next generation of AI agents that transform how business professionals operate and reshape the future of hybrid (AI + human) work. As an Applied Scientist, you are recognized for your expertise, advise team members on a range of machine learning topics, and work closely with software engineers to drive the delivery of end-to-end agentic AI solutions. Your work focuses on ambiguous problem areas where the business problem or opportunity may not yet be defined. The problems that you take on require scientific breakthroughs. You take a long-term view of the business objectives, product roadmaps, technologies, and how they should evolve. You drive mindful discussions with stakeholders, engineers, and scientist peers. You bring perspective and provide context for current technology choices and make recommendations on the right modeling and component design approach to achieve the desired business outcome and user experience. Key job responsibilities • Design and develop AI agents specifically tailored for business and product management workflows. • Create novel frameworks for automating and enhancing workplace tasks. • Lead cross-team projects to bring solutions from research to production. • Drive innovation in business process automation and decision support systems. • Communicate and document your research via publishing papers in external scientific venues. About the team As part of the AWS Applied AI Solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques About the team The India Machine Learning team works closely with the business and engineering teams in building ML solutions that create an impact for Amazon's IN businesses. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on consumers and end users.
US, CA, Sunnyvale
We're seeking an Applied Scientist to pioneer sensor-based algorithms that power next-generation experiences across Amazon's device ecosystem, including Echo, Kindle, Fire TV, and Fire Tablets. Working with multidisciplinary teams of scientists and engineers, you'll develop innovative technologies at the intersection of signal processing and machine learning that transform how millions of customers interact with our products. The ideal candidate combines strong theoretical foundations in machine learning and signal processing with practical implementation skills. You'll develop state-of-the-art sensor algorithms from concept to production, translate complex research problems into practical consumer technologies, and create solutions optimized for diverse hardware platforms. We're looking for someone who thrives in fast-paced environments, solves complex problems efficiently, and iterates quickly based on real-world feedback. Your technical decisions will directly shape future product capabilities and deliver exceptional experiences to Amazon customers worldwide. Key job responsibilities - Develop and implement advanced algorithms and machine learning models to enhance Amazon's products and services. - Collaborate with cross-functional teams, including software engineers, scientists, and product managers to translate business needs into technical solutions. - Conduct thorough data analysis to identify trends, patterns, and insights that drive product innovation and improvement. - Optimize algorithms for performance, scalability, and efficiency across various Amazon platforms. - Present findings and recommendations to stakeholders, influencing product strategy and decision-making. - Stay abreast of the latest research and technological advancements in machine learning and related fields to continuously improve Amazon's offerings. - Ensure the ethical use of data and algorithms, adhering to Amazon's guidelines and best practices. - Contribute to the publication of research findings in conferences and journals, elevating Amazon's reputation in the scientific community. About the team At Amazon Lab126, we're a pioneering research and development hub dedicated to designing and engineering revolutionary consumer electronics. Established in 2004 as a subsidiary of Amazon.com, Inc., we've been at the forefront of innovation, starting with the creation of the best-selling Kindle family of products. Our portfolio has since expanded to include transformative devices such as Fire tablets, Fire TV, and Amazon Echo. Our Lab126 team is dedicated to developing advanced sensing technologies and algorithms, collaborating with program managers to design and implement transformative user features and experiences.
US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Sunnyvale
Are you passionate about solving complex wireless challenges that impact millions of customers? Join Amazon's Device Connectivity team who are revolutionizing how wireless technology shapes the future of consumer electronics. As a Wireless Research Scientist, you'll be at the forefront of developing solutions that enhance the connectivity and reliability of millions of customer devices. Your expertise will drive the creation of next-generation wireless technologies, from concept to implementation, directly shaping the future of Amazon's product ecosystem. In this role, you'll tackle complex electromagnetic challenges head-on, leveraging your analytical prowess and deep understanding of wireless principles. You'll collaborate with world-class scientists and engineers, applying machine learning and statistical analysis to optimize system performance and create scalable, cost-effective solutions for mass production. Your impact will extend beyond the lab, as you transform research concepts into practical features that delight our customers. You'll influence product roadmaps, drive critical technical decisions, and play a key role in accelerating our product development lifecycle. Key job responsibilities As a Wireless research scientist, you will use your experience to initiate wireless design, development, execution and implementation of scientific research projects. Working closely with fellow hardware dev, scientists and product managers, you will use your experience in modeling, statistics, and simulation to design new hardware, customer modeling and evaluate their benefits and impacts to cost, connectivity use cases, reliability, and speed of productization Ability to work and connect concepts across various engineering fields like EMC design, desense, antenna, wireless communication and computational electromagnetics to solve complex and novel problems Experience in combinatorial optimization, algorithms, data structures, statistics, and/or machine learning that can be leveraged to develop novel wireless designs that can be integrated and mass produced on products. This position requires superior analytical thinking, and ability to apply their technical and statistical knowledge to identify opportunities for wireless/EM applications. You should be able to mine and analyze large data, and be able to use necessary programming and statistical analysis software/tools to do so. Ability to leverage ML techniques for design optimization and performance modeling that influence technology integration and productization of novel consumer products. A day in the life Invent • You invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • You expertly frame the scientific approach to solve ambiguous business problems, distinguishing between those that require new solutions and those that can be addressed with existing approaches. • You focus on business and customer problems that require scientific advances at the product level. Your research solutions set a strong example for others. You work efficiently and routinely delivered the right things. • You show good judgment when making trade-offs between short- and long-term customer, business, and technology needs. • You drive your team’s scientific agenda by proposing new initiatives and securing management buy-in. • You lead the writing of internal documents or external publications when appropriate for your team and not precluded by business considerations. • Your work consistently delivers significant benefit to the business. What you deliver could be functional, such as a software system or conceptual, such as a paper that advances scientific knowledge in a specific field or convinces the business to focus on a particular strategy. Implement • You are self-directed in your daily work and require only limited guidance for confidence checks. • You define and prioritize science or engineering specifications for new approaches. • You independently assess alternative technologies or approaches to choose the right one to be used by your system or solution with little guidance. You may own the delivery of solutions for an entire business application. • You ensure accuracy in your process abstractions, models, and simulation results. • Your solutions are inventive, maintainable, scalable, extensible, accurate, and cost-effective (e.g., you know where to extend or adapt methods). • Your solutions are creative and of such a high quality that they can be handed off with minimal rework. Influence • You are a key influencer in team strategy that impacts the business. You make insightful contributions to team roadmaps, goals, priorities, and approach. • You build consensus on larger projects and factor complex efforts into independent tasks that can be performed by you and others. • You actively recruit and help others by coaching and mentoring in your organization (or at your location). • You are involved and visible in the broader scientific communities (internal or external) as a subject matter expert. For example, you may give guest lectures, review scientific work of others, serve as a Program Committee member in conferences, or serve as a reviewer for journal publications. • You contribute to the broader internal and external scientific communities. About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?