79 Amazon Research Awards recipients announced

Awardees, who represent 54 universities in 14 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 79 award recipients who represent 54 universities in 14 countries.

This announcement includes awards funded under four call for proposals during the fall 2022 cycle: AWS AI, Automated Reasoning, Prime Video, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

"Complexities of AI/ML challenges at scale often intersect more than one discipline and require creative and diverse approaches to tackle these issues," said Arash Nourian, AWS general manager, Machine Learning Engines. "I was amazed by the diversity of disciplines and the scientific content of Awardee’s submissions that collectively could represent significant potential impact on both the AI/ML research community and society."

“The incredible response to Prime Video’s fall 2022 Call for Proposals is a testament to the exciting work the ARAs have inspired across four cutting-edge research categories,” said BA Winston, VP of Technology at Prime Video. “I am delighted by the winning proposals and look forward to the ongoing research across several areas in Prime Video that is helping us create even more impactful customer-obsessed technology.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order, fall 2022 cycle call-for-proposal recipients, sorted by research area.

AWS AI

AWS AI - ARA fall 2022.png

RecipientUniversityResearch title
Jonathan AfilaloMcGill UniversityCoreslicer: deep learning of CT images for frailty assessment in clinical care
Saman AmarasingheMassachusetts Institute of TechnologyReimagining the compiler in the cloud
Akshay ChaudhariStanford UniversityLarge-scale self-supervised learning for medical imaging
Soheil FeiziUniversity Of Maryland, College ParkTowards mitigating spurious correlations in deep learning
Aikaterini FragkiadakiCarnegie Mellon UniversityAnalogical networks for continual memory-modulated visual learning and language understanding
Mark GersteinYale UniversityPrivacy-preserving storage, sharing, and analysis for genomics data
Joseph GonzalezUniversity Of California, BerkeleyA unified platform for training and serving large models
Michael GubanovFlorida State UniversityAn interactive polygraph for robust access to scientific knowledge
Yan HuangCarnegie Mellon UniversityCombating algorithmic bias inherited from human decision making: a human-AI perspective
CV JawaharThe International Institute of Information Technology - HyderabadDeeper understanding of multilingual handwritten documents: from recognition to dialogues
Zhihao JiaCarnegie Mellon UniversityCombining ML and systems optimizations for sustainable and affordable ML
Daniel KhashabiJohns Hopkins UniversityCrowdsourcing with machine backbone
Rahul KrishnanUniversity Of TorontoTowards a learning healthcare system
Anastasios KyrillidisRice UniversityEfficient and affordable transformers for distributed platforms
Kevin LeachVanderbilt UniversityDocumentnet: iterative data collection for building a robust document understanding dataset
Lei LiUniversity Of California, Santa BarbaraReal-time robust simultaneous interpretation with few samples
Xiaoyi LuUniversity Of California, MercedScaling collective communication for distributed deep learning training
Yunan LuoGeorgia Institute of TechnologyCalibrated and interpretable geometric deep learning for robust drug screening
Graham NeubigCarnegie Mellon UniversityTowards more reliable and interpretable code language models
Qing QuUniversity of Michigan, Ann ArborPrinciples of deep representation learning via neural collapse
Mirco RavanelliConcordia UniversityToward empathetic conversational AI
Amit Roy-ChowdhuryUniversity of California, RiversideExploring privacy in deep metric learning: applications in computer vision
Chirag ShahUniversity of WashingtonFairness as a service: operationalizing fairness in search and recommendation applications through a novel multi-objective optimization framework
Kristina SimonyanMassachusetts Eye and Ear/Harvard Medical SchoolMachine learning for automated speech processing for real-time speech prosthesis in neurological disorders
Berrak SismanUniversity of Texas, DallasExplainable AI for expressive voice synthesis
Dawn SongUniversity Of California, BerkeleyFedOps: an abstraction for trustworthy federated learning
Peter SpirtesCarnegie Mellon UniversitySystem-level and long-term fairness through causal learning and reasoning
Ion StoicaUniversity Of California, BerkeleyA unified platform for training and serving large models
Vasileios SyrgkanisStanford UniversityAutomating the causal machine learning pipeline
Carlo TomasiDuke UniversityDeep neural network classifiers with margins in input space
Yatish TurakhiaUniversity Of California, San DiegoMachine learning enabled wastewater-based epidemiology
Xiaolong WangUniversity of California, San DiegoLearning implicit neural foundation models
Neeraja YadwadkarUniversity Of Texas, AustinEasy-to-use and cost-efficient distributed inference serving
Hamed ZamaniUniversity Of Massachusetts AmherstOn the optimization of retrieval-enhanced machine learning models
Ce ZhangETH ZurichFedOps: an abstraction for trustworthy federated learning
Tianyi ZhangPurdue UniversityHuman-in-the-loop deep learning optimization for better usability, transparency, and user trust
Yiying ZhangUniversity Of California, San DiegoTraining deep neural networks with "zero" activations
Jishen ZhaoUniversity Of California, San DiegoSemantic-informed document structure recognition with large language models
Ben ZhaoUniversity Of ChicagoDigital forensics for deep neural networks
Heather ZhengUniversity of ChicagoDigital forensics for deep neural networks
Jun-Yan ZhuCarnegie Mellon UniversityCompositional personalization of large-scale generative models
Jia ZouArizona State UniversityA compilation framework for accelerating machine learning inference queries

Amazon Sustainability

Amazon Sustainability ARA fall 2022.png

RecipientUniversityResearch title
Vikram IyerUniversity of WashingtonComputational design and circular fabrication for sustainable electronics
Adriana SchulzUniversity of WashingtonComputational design and circular fabrication for sustainable electronics
Mari WinklerUniversity of WashingtonA novel bioreactor platform for continuous high‐rate bio-production

Automated Reasoning

Automated Reasoning ARA fall 2022.png

RecipientUniversityResearch title
Maria Paola BonacinaUniversità degli Studi di VeronaAdvances in conflict-driven SATisfiability modulo theories and assignments
Ahmed BouajjaniUniversite Paris-CiteSafe composition of distributed off-the-shelf components
Martin Nyx BrainCity, University Of LondonSnowshoes: overapproximating code footprints for safe program exploration
Anton BurtsevUniversity Of UtahAtmosphere: leveraging language safety and operating system design for verification
Alastair DonaldsonImperial College LondonDafnyDefender: automated testing for the Dafny ecosystem
Francois DupressoirUniversity Of BristolFormosa cryptography: computer-aided reasoning for high-assurance cryptographic design and engineering
Gidon ErnstLudwig Maximilian University of MunichSecurity specifications for Dafny
Pascal FontaineUniversity of LiègeSMT: modules, formats, and standards
Jeffrey FosterTufts UniversityAutomated testing of external methods in Dafny
Sicun GaoUniversity Of California, San DiegoMonte Carlo tree methods for decision-making in dReal
Philippa GardnerImperial College LondonGillian-Rust: unbounded verification for unsafe rust code
Limin JiaCarnegie Mellon UniversityEnabling one-line rust verification with program synthesis
Patrick LamUniversity Of WaterlooStatically inferring contracts from assertions & tests
Aravind MachiryPurdue UniversitySecurity verification and hardening of CI workflows
Anders MøllerAarhus UniversitySecuring node.js programs with static resource analysis
Magnus MyreenChalmers University Of TechnologyCompiling Dafny to CakeML
ThanhVu NguyenGeorge Mason UniversityScalable and precise DNN constraint solving with abstraction and conflict clause learning
Burcu Kulahcioglu OzkanDelft University of TechnologyCoverage-directed randomized testing of distributed systems
Bryan ParnoCarnegie Mellon UniversityVerus: developing provably correct and reliable rust code
Corina PasareanuCarnegie Mellon UniversityEnabling one-line rust verification with program synthesis
Ruzica PiskacYale UniversityFormalizing FISA: using automated reasoning to formalize legal reasoning
Elizabeth PolgreenUniversity of EdinburghAutomated and provably correct code modernization
Fred SchneiderCornell UniversityUsing non-deterministic executable specification to test properties that relate executions
Scott ShapiroYale UniversityFormalizing FISA: using automated reasoning to formalize legal reasoning
Marc ShapiroINRIA & Sorbonne Universite ParisSafe composition of distributed off-the-shelf components
Alexandra SilvaCornell UniversityAutomated reasoning for correctness and incorrectness
Yakir VizelTechnion – Israel Institute Of TechnologyLazy and incremental framework for solving CHCs
Florian ZulegerTechnische Universität WienAutomated cost analysis of data structures

Prime Video

Prime Video ARA fall 2022.png

RecipientUniversityResearch title
David BullUniversity of BristolGeneric deep video quality assessment in the extended parameter space
Eamonn KeoghUniversity of California RiversideA proposal to make any time series anomaly detection algorithm faster, more accurate and more practical
Xiaorui LiuNorth Carolina State UniversityDeep reinforcement learning for the mixed ranking of recommendations and advertisements with page-wise display
Jiliang TangMichigan State UniversityDeep reinforcement learning for the mixed ranking of recommendations and advertisements with page-wise display
Hanghang TongUniversity of Illinois Urbana-ChampaignGraph algorithms for personalized recommendation
Fan ZhangUniversity of BristolGeneric deep video quality assessment in the extended parameter space

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.