The science behind Echo Frames

How the team behind Echo Frames delivered longer battery life and improved sound quality inside the slim form factor of a pair of eyeglasses.

When the team behind Amazon’s Echo Frames set out to improve the next generation of their product, they needed to strike a delicate balance. Customer feedback on earlier versions of the smart audio eyeglasses centered on three elements: longer battery life, more style options, and improved sound quality.

A man with a beard is seen wearing a pair of Echo Frames glasses. He is standing outside and is pictured in three-quarters view.
Echo Frames feature custom-built speech processing technology that drastically improves word recognition — key for interacting with Alexa in windy or noisy environments.

Achieving all three of those goals would be a challenge in itself; doing that inside the slim form factor of a pair of Alexa-enabled eyeglasses upped the ante.

“All three of those goals are in tension with one another,” says Adam Slaboski, senior manager of product management and product lead for Echo Frames. The easiest way to improve battery and audio would be to increase the size of the device, but that would conflict with feedback around the importance of design. Amping up bass to improve the audio experience would consume more battery, and so on.

Finding that sweet spot was a huge effort in engineering and customer understanding.
Adam Slaboski

“Finding that sweet spot was a huge effort in engineering and customer understanding," Slaboski says.

With Echo Frames (3rd Gen) and Carrera Smart Glasses with Alexa (designed in collaboration with Safilo, one of the world’s leading eyewear companies), the Smart Eyewear team met the challenge.

The smart glasses feature enhanced audio playback, with custom-built speech-processing technology that dramatically improves word recognition — key for interacting with Alexa in windy or noisy environments. The new range of frame styles come in a variety of sizes, and all come with a significant boost in battery life.

From the outside, Echo Frames still look like a pair of regular eyeglasses. “But we changed everything on the inside,” says Jean Wang, general manager and director of Smart Eyewear. “And we learned new lessons along the way.”

Here’s how Amazon engineers and product designers tackled all three customer demands.

Turning up the volume with open-ear audio

Like previous generations of Echo Frames, the current model uses open-ear audio. In addition to fitting the form factor of a pair of glasses, this allows users to maintain awareness of their surroundings while interacting with Alexa or enjoying audio entertainment.

Related content
Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

The open-ear audio design has been popular with users who are blind or have low vision, notes Jenai Akina, senior product manager for Echo Frames. “It’s really beneficial that it doesn’t obstruct a critical sense like hearing,” she explains. “That form factor is really helpful for daily interactions — especially when we want to be open to engage with our environment and the people around us. Open ear allows customers to maintain awareness, while providing access to a voice assistant.”

Open-ear audio brings a host of unique challenges to the engineering process. Typical headphones and earbuds block off the ear from the outside world, preventing air from escaping. That funnels more of the sound waves from the speakers into the user’s ears. With an open-ear design, sound has to travel farther, and there is less control over direction. That could lower the audio volume and reduce clarity — and importantly, audio could leak out to people standing nearby. The key is to drive the sound pressure as much as possible toward the user’s ears while minimizing the audio leakage.

By bringing people into the lab, we can simulate real environmental noise conditions like wind, background noise in a crowded restaurant, and the sound of cars on the road.
Scott Choi

In working to improve audio quality, the team continued to hone the directionality of the sound while also working to improve volume and bass. A technique called dipole speaker configuration helps to do both. In addition to a sound porthole located near the ear canal, the frames feature a second porthole that cancels unnecessary sound while amping up bass.

With input from in-house audio experts and instruments to analyze measurements like harmonic distortion, the team came up with a set of potential tuning solutions that met objective targets for audio quality. They then tested those “flavors” of tuning in the lab with several user groups.

“By bringing people into the lab, we can simulate real environmental-noise conditions like wind, background noise in a crowded restaurant, and the sound of cars on the road,” explains senior manager of audio Scott Choi. That allowed his team to understand environmental variables in a controlled setting.

With the feedback from those focus groups, the team then selected a few of the most popular tunings to push out to beta testing, where users could provide feedback on a weekly basis.

“We see how the feedback trends change with each tuning change, which gradually allows it to mature and converge into a certain tuning,” Choi says. The result is audio calibrated to maximize intelligibility and volume without leaking private conversations (or guilty-pleasure playlists).

The Echo Frame team used a rotating arch of microphones to lest leakage. This animation shows the array moving in circles around a mannequin wearing the Gen 3 prototype, creating a 3D sphere plot of audio leakage. Via this testing, the team was able to minimize leakage to the side and back.
The Echo Frame team used a rotating arch of microphones to lest leakage. The array moved in circles around a mannequin wearing the Gen 3 prototype, creating a 3D sphere plot of audio leakage. Via this testing, the team was able to minimize leakage to the side and back.

To test leakage, the audio team rigged up a rotating arch of microphones. The array moved in circles around a mannequin wearing the Gen 3 prototype, creating a 3-D sphere plot of audio leakage. Choi explains that they focused on minimizing leakage to the side and back, and ultimately, the speakers were moved much closer to the ear to help minimize leakage and improve loudness.

Leakage isn’t the only privacy consideration. The Echo Frame team also continues to innovate on protecting users from bad actors who may get hold of their smart glasses.

Related content
Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

Gen 2 protected users by requiring them to authenticate their sessions using a trusted phone. Without authentication, a user can’t invoke sensitive commands like “navigate me home,” unlocking a smart lock, or making a purchase. But customers didn’t like the added friction.

Now customers who enroll in Alexa Voice ID will be able to use their vocal fingerprints for authentication to receive responses to smart-home utterances.

“We’re the first on-the-go Alexa device to use Voice ID for privacy authentication,” Slaboski says.

Boosting battery life without cramping style

Gen 3 improves continuous music playback time to six hours, versus the four hours offered by the previous generation of Echo Frames. It also bumps battery life to up to 14 hours of moderate usage spread across playback, talk time, notifications, and Alexa interactions.

Delivering the desired loudness, bass, and audio quality while optimizing for battery life was a careful balance.
Ravi Sanapala

The team couldn’t simply slap on a bigger battery without making the Echo Frames look less like normal glasses. And with sound quality high on the priority list as well, the devices were going to need as much juice as ever. The team focused on trimming power use in standby mode, ensuring that the overall battery consumption would go down without weakening the speakers when users needed them.

“Delivering the desired loudness, bass, and audio quality while optimizing for battery life was a careful balance,” says senior product manager Ravi Sanapala. “We need the battery to last throughout as much of the day as possible and for Alexa to be available whenever users need it.”

The architectural changes in speaker placement helped keep power needs low while improving audio. The team also tweaked the placement of the battery itself, distributing its capacity differently than in Gen 2. Sanapala adds that algorithmic changes were key in balancing idle-battery conservation and on-demand device usage.

“We had to collaborate with all of our cross-functional teams to optimize everything,” Sanapala says.

Gen 3 also features an all-new charging stand, which is designed for compatibility with all frame shapes and keeps lenses upright, protecting them from scratches while wirelessly charging.

Making smart eyewear look like eyewear

Making glasses that are suitable for everyday wear has always been a priority. “One of our goals has always been to develop technology that appears when you need it and disappears when you don’t,” says Wang.

Previous models of Echo Frames have come in a single, one-size-fits-all style.

A person is seen wearing Echo Frames sunglasses outside. The person carries a notebook and is looking down at it, and there are some buildings and blue sky in the background.
The Echo Frames team consulted with both internal and external eyewear designers to review common and popular styles of frames, and to survey potential customers about their preferences.

“That was a very intentional move,” Wang explains. “We wanted to start simply and learn from customer feedback.”

Gen 2’s flexible spring hinge and adjustable temple tips ensured that the single size fit many different faces. In fact, Wang says, while the goal was to fit around half of all potential users, they’ve found that 85 percent of the adult population can comfortably wear the Gen 2 design.

But with Gen 3, Wang says, the team needed to go beyond designing glasses that looked typical. Customers wanted glasses that looked stylish, too.

The team consulted with both internal and external eyewear designers to review common and popular styles of frames, as well as “edgier” designs, and to survey potential customers about their preferences. After testing options with beta customers, they settled on a variety of styles in various colors that cover a range of aesthetics. They also switched to an acetate material to match the feel of high-end eyewear.

Related content
How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

While each style will still come in a single size, the range of designs will accommodate even more faces than Gen 2, as the collection spans narrow, medium, and wide fits. Each style features adjustable temple tips constructed out of silicone around a lightweight titanium core for better fit. And despite the boost in battery life, the temples of Gen 3 frames have actually been slimmed down. Wang notes that competitive products often place large batteries behind a user’s ears. But presenting Echo Frames users with something that bulky and uncomfortable was never on the table.

“We were working with really heavy constraints,” Wang says. “So we have been very deliberate in making design choices in the service of our customer. That’s challenged us to be innovative and really push the limits of what’s possible in the architecture of our designs.”

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, CA, Santa Clara
The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: - AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization - Machine Learning Compiler: Creating advanced compiler techniques for ML workloads - System Robustness: Building tools for accuracy and reliability validation - Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures A day in the life AWS Utility Computing (UC) provides product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Additionally, this role may involve exposure to and experience with Amazon's growing suite of generative AI services and other cloud computing offerings across the AWS portfolio. About the team AWS Neuron is the software of Trainium and Inferentia, the AWS Machine Learning chips. Inferentia delivers best-in-class ML inference performance at the lowest cost in the cloud to our AWS customers. Trainium is designed to deliver the best-in-class ML training performance at the lowest training cost in the cloud, and it’s all being enabled by AWS Neuron. Neuron is a Software that include ML compiler and native integration into popular ML frameworks. Our products are being used at scale with external customers like Anthropic and Databricks as well as internal customers like Alexa, Amazon Bedrocks, Amazon Robotics, Amazon Ads, Amazon Rekognition and many more. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Application deadline: Applications will be accepted on an ongoing basis Amazon Ads is re-imagining advertising through cutting-edge generative artificial intelligence (AI) technologies. We combine human creativity with AI to transform every aspect of the advertising life cycle—from ad creation and optimization to performance analysis and customer insights. Our solutions help advertisers grow their brands while enabling millions of customers to discover and purchase products through delightful experiences. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground in product and technical innovations. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. As a Senior Applied Scientist at Amazon Ads, you will: • Research and implement cutting-edge machine learning (ML) approaches, including applications of generative AI and large language models • Develop and deploy innovative ML solutions spanning multiple disciplines, from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models • Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data • Build and optimize models that balance multiple stakeholder needs, helping customers discover relevant products while enabling advertisers to achieve their goals efficiently • Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams that include engineers, product managers, and other scientists • Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact • Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience Why you’ll love this role: This role offers unprecedented breadth in ML applications and access to extensive computational resources and rich datasets that will enable you to build truly innovative solutions. You'll work on projects that span the full advertising life cycle, from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll work alongside talented engineers, scientists, and product leaders in a culture that encourages innovation, experimentation, and bias for action, and you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their marks. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two Applied Scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/ Key job responsibilities As an Applied Scientist in Amazon Ads, you will: - Research and implement cutting-edge ML approaches, including applications of generative AI and large language models - Develop and deploy innovative ML solutions spanning multiple disciplines – from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models - Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data - Build and optimize models that balance multiple stakeholder needs - helping customers discover relevant products while enabling advertisers to achieve their goals efficiently - Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams including engineers, product managers, and other scientists - Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact - Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience A day in the life Why you will love this role: This role offers unprecedented breadth in ML applications, and access to extensive computational resources and rich datasets that enable you to build truly innovative solutions. You'll work on projects that span the full advertising lifecycle - from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll also work alongside talented engineers, scientists and product leaders in a culture that encourages innovation, experimentation, and bias for action where you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. About the team Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their mark. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two applied scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents for our autonomous campaigns experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Autonomous Campaigns team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware campaign creation and management system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The AGI Autonomy Perception team performs applied machine learning research, including model training, dataset design, pre- and post- training. We train Nova Act, our state-of-the art computer use agent, to understand arbitrary human interfaces in the digital world. We are seeking a Machine Learning Engineer who combines strong ML expertise with software engineering excellence to scale and optimize our ML workflows. You will be a key member on our research team, helping accelerate the development of our leading computer-use agent. We are seeking a strong engineer who has a passion for scaling ML models and datasets, designing new ML frameworks, improving engineering practices, and accelerating the velocity of AI development. You will be hired as a Member of Technical Staff. Key job responsibilities * Design, build, and deploy machine learning models, frameworks, and data pipelines * Optimize ML training, inference, and evaluation workflows for reliability and performance * Evaluate and improve ML model performance and metrics * Develop tools and infrastructure to enhance ML development productivity
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. This position will be part of the Conversational Ad Experiences team within the Amazon Advertising organization. Our cross-functional team focuses on designing, developing and launching innovative ad experiences delivered to shoppers in conversational contexts. We utilize leading-edge engineering and science technologies in generative AI to help shoppers discover new products and brands through intuitive, conversational, multi-turn interfaces. We also empower advertisers to reach shoppers, using their own voice to explain and demonstrate how their products meet shoppers' needs. We collaborate with various teams across multiple Amazon organizations to push the boundary of what's possible in these fields. We are seeking a science leader for our team within the Sponsored Products & Brands organization. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. An ideal candidate is able to navigate through ambiguous requirements, working with various partner teams, and has experience in generative AI, large language models (LLMs), information retrieval, and ads recommendation systems. Using a combination of generative AI and online experimentation, our scientists develop insights and optimizations that enable the monetization of Amazon properties while enhancing the experience of hundreds of millions of Amazon shoppers worldwide. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities - Serve as a tech lead for defining the science roadmap for multiple projects in the conversational ad experiences space powered by LLMs. - Build POCs, optimize and deploy models into production, run experiments, perform deep dives on experiment data to gather actionable learnings and communicate them to senior leadership - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. - Work closely with product managers to contribute to our mission, and proactively identify opportunities where science can help improve customer experience - Research new machine learning approaches to drive continued scientific innovation - Be a member of the Amazon-wide machine learning community, participating in internal and external meetups, hackathons and conferences - Help attract and recruit technical talent, mentor scientists and engineers in the team
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders