The science behind Echo Frames

How the team behind Echo Frames delivered longer battery life and improved sound quality inside the slim form factor of a pair of eyeglasses.

When the team behind Amazon’s Echo Frames set out to improve the next generation of their product, they needed to strike a delicate balance. Customer feedback on earlier versions of the smart audio eyeglasses centered on three elements: longer battery life, more style options, and improved sound quality.

A man with a beard is seen wearing a pair of Echo Frames glasses. He is standing outside and is pictured in three-quarters view.
Echo Frames feature custom-built speech processing technology that drastically improves word recognition — key for interacting with Alexa in windy or noisy environments.

Achieving all three of those goals would be a challenge in itself; doing that inside the slim form factor of a pair of Alexa-enabled eyeglasses upped the ante.

“All three of those goals are in tension with one another,” says Adam Slaboski, senior manager of product management and product lead for Echo Frames. The easiest way to improve battery and audio would be to increase the size of the device, but that would conflict with feedback around the importance of design. Amping up bass to improve the audio experience would consume more battery, and so on.

Finding that sweet spot was a huge effort in engineering and customer understanding.
Adam Slaboski

“Finding that sweet spot was a huge effort in engineering and customer understanding," Slaboski says.

With Echo Frames (3rd Gen) and Carrera Smart Glasses with Alexa (designed in collaboration with Safilo, one of the world’s leading eyewear companies), the Smart Eyewear team met the challenge.

The smart glasses feature enhanced audio playback, with custom-built speech-processing technology that dramatically improves word recognition — key for interacting with Alexa in windy or noisy environments. The new range of frame styles come in a variety of sizes, and all come with a significant boost in battery life.

From the outside, Echo Frames still look like a pair of regular eyeglasses. “But we changed everything on the inside,” says Jean Wang, general manager and director of Smart Eyewear. “And we learned new lessons along the way.”

Here’s how Amazon engineers and product designers tackled all three customer demands.

Turning up the volume with open-ear audio

Like previous generations of Echo Frames, the current model uses open-ear audio. In addition to fitting the form factor of a pair of glasses, this allows users to maintain awareness of their surroundings while interacting with Alexa or enjoying audio entertainment.

Related content
Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

The open-ear audio design has been popular with users who are blind or have low vision, notes Jenai Akina, senior product manager for Echo Frames. “It’s really beneficial that it doesn’t obstruct a critical sense like hearing,” she explains. “That form factor is really helpful for daily interactions — especially when we want to be open to engage with our environment and the people around us. Open ear allows customers to maintain awareness, while providing access to a voice assistant.”

Open-ear audio brings a host of unique challenges to the engineering process. Typical headphones and earbuds block off the ear from the outside world, preventing air from escaping. That funnels more of the sound waves from the speakers into the user’s ears. With an open-ear design, sound has to travel farther, and there is less control over direction. That could lower the audio volume and reduce clarity — and importantly, audio could leak out to people standing nearby. The key is to drive the sound pressure as much as possible toward the user’s ears while minimizing the audio leakage.

By bringing people into the lab, we can simulate real environmental noise conditions like wind, background noise in a crowded restaurant, and the sound of cars on the road.
Scott Choi

In working to improve audio quality, the team continued to hone the directionality of the sound while also working to improve volume and bass. A technique called dipole speaker configuration helps to do both. In addition to a sound porthole located near the ear canal, the frames feature a second porthole that cancels unnecessary sound while amping up bass.

With input from in-house audio experts and instruments to analyze measurements like harmonic distortion, the team came up with a set of potential tuning solutions that met objective targets for audio quality. They then tested those “flavors” of tuning in the lab with several user groups.

“By bringing people into the lab, we can simulate real environmental-noise conditions like wind, background noise in a crowded restaurant, and the sound of cars on the road,” explains senior manager of audio Scott Choi. That allowed his team to understand environmental variables in a controlled setting.

With the feedback from those focus groups, the team then selected a few of the most popular tunings to push out to beta testing, where users could provide feedback on a weekly basis.

“We see how the feedback trends change with each tuning change, which gradually allows it to mature and converge into a certain tuning,” Choi says. The result is audio calibrated to maximize intelligibility and volume without leaking private conversations (or guilty-pleasure playlists).

The Echo Frame team used a rotating arch of microphones to lest leakage. This animation shows the array moving in circles around a mannequin wearing the Gen 3 prototype, creating a 3D sphere plot of audio leakage. Via this testing, the team was able to minimize leakage to the side and back.
The Echo Frame team used a rotating arch of microphones to lest leakage. The array moved in circles around a mannequin wearing the Gen 3 prototype, creating a 3D sphere plot of audio leakage. Via this testing, the team was able to minimize leakage to the side and back.

To test leakage, the audio team rigged up a rotating arch of microphones. The array moved in circles around a mannequin wearing the Gen 3 prototype, creating a 3-D sphere plot of audio leakage. Choi explains that they focused on minimizing leakage to the side and back, and ultimately, the speakers were moved much closer to the ear to help minimize leakage and improve loudness.

Leakage isn’t the only privacy consideration. The Echo Frame team also continues to innovate on protecting users from bad actors who may get hold of their smart glasses.

Related content
Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

Gen 2 protected users by requiring them to authenticate their sessions using a trusted phone. Without authentication, a user can’t invoke sensitive commands like “navigate me home,” unlocking a smart lock, or making a purchase. But customers didn’t like the added friction.

Now customers who enroll in Alexa Voice ID will be able to use their vocal fingerprints for authentication to receive responses to smart-home utterances.

“We’re the first on-the-go Alexa device to use Voice ID for privacy authentication,” Slaboski says.

Boosting battery life without cramping style

Gen 3 improves continuous music playback time to six hours, versus the four hours offered by the previous generation of Echo Frames. It also bumps battery life to up to 14 hours of moderate usage spread across playback, talk time, notifications, and Alexa interactions.

Delivering the desired loudness, bass, and audio quality while optimizing for battery life was a careful balance.
Ravi Sanapala

The team couldn’t simply slap on a bigger battery without making the Echo Frames look less like normal glasses. And with sound quality high on the priority list as well, the devices were going to need as much juice as ever. The team focused on trimming power use in standby mode, ensuring that the overall battery consumption would go down without weakening the speakers when users needed them.

“Delivering the desired loudness, bass, and audio quality while optimizing for battery life was a careful balance,” says senior product manager Ravi Sanapala. “We need the battery to last throughout as much of the day as possible and for Alexa to be available whenever users need it.”

The architectural changes in speaker placement helped keep power needs low while improving audio. The team also tweaked the placement of the battery itself, distributing its capacity differently than in Gen 2. Sanapala adds that algorithmic changes were key in balancing idle-battery conservation and on-demand device usage.

“We had to collaborate with all of our cross-functional teams to optimize everything,” Sanapala says.

Gen 3 also features an all-new charging stand, which is designed for compatibility with all frame shapes and keeps lenses upright, protecting them from scratches while wirelessly charging.

Making smart eyewear look like eyewear

Making glasses that are suitable for everyday wear has always been a priority. “One of our goals has always been to develop technology that appears when you need it and disappears when you don’t,” says Wang.

Previous models of Echo Frames have come in a single, one-size-fits-all style.

A person is seen wearing Echo Frames sunglasses outside. The person carries a notebook and is looking down at it, and there are some buildings and blue sky in the background.
The Echo Frames team consulted with both internal and external eyewear designers to review common and popular styles of frames, and to survey potential customers about their preferences.

“That was a very intentional move,” Wang explains. “We wanted to start simply and learn from customer feedback.”

Gen 2’s flexible spring hinge and adjustable temple tips ensured that the single size fit many different faces. In fact, Wang says, while the goal was to fit around half of all potential users, they’ve found that 85 percent of the adult population can comfortably wear the Gen 2 design.

But with Gen 3, Wang says, the team needed to go beyond designing glasses that looked typical. Customers wanted glasses that looked stylish, too.

The team consulted with both internal and external eyewear designers to review common and popular styles of frames, as well as “edgier” designs, and to survey potential customers about their preferences. After testing options with beta customers, they settled on a variety of styles in various colors that cover a range of aesthetics. They also switched to an acetate material to match the feel of high-end eyewear.

Related content
How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

While each style will still come in a single size, the range of designs will accommodate even more faces than Gen 2, as the collection spans narrow, medium, and wide fits. Each style features adjustable temple tips constructed out of silicone around a lightweight titanium core for better fit. And despite the boost in battery life, the temples of Gen 3 frames have actually been slimmed down. Wang notes that competitive products often place large batteries behind a user’s ears. But presenting Echo Frames users with something that bulky and uncomfortable was never on the table.

“We were working with really heavy constraints,” Wang says. “So we have been very deliberate in making design choices in the service of our customer. That’s challenged us to be innovative and really push the limits of what’s possible in the architecture of our designs.”

Related content

US, WA, Bellevue
The Learning & Development Science team in Amazon Logistics (AMZL) builds state-of-the-art Artificial Intelligence (AI) solutions for enhancing leadership and associate development within the organization. We develop technology and mechanisms to map the learner journeys, answer real-time questions through chat assistants, and drive the right interventions at the right time. As an Applied Scientist on the team, you will play a critical role in driving the design, research, and development of these science initiatives. The ideal candidate will lead the research on learning and development trends, and develop impactful learning journey roadmap that align with organizational goals and priorities. By parsing the information of different learning courses, they will utilize the latest advances in Gen AI technology to address the personalized questions in real-time from the leadership and associates through chat assistants. Post the learning interventions, the candidate will apply causal inference or A/B experimentation frameworks to assess the associated impact of these learning programs on associate performance. As a part of this role, this candidate will collaborate with a large team of experts in the field and move the state of learning experience research forward. They should have the ability to communicate the science insights effectively to both technical and non-technical audiences. Key job responsibilities * Apply science models to extract actionable information from learning feedback * Leverage GenAI/Large Language Model (LLM) technology for scaling and automating learning experience workflows * Design and implement metrics to evaluate the effectiveness of AI models * Present deep dives and analysis to both technical and non-technical stakeholders, ensuring clarity and understanding and influencing business partners * Perform statistical analysis and statistical tests including hypothesis testing and A/B testing * Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation
US, WA, Bellevue
Are you excited about developing cutting-edge generative AI, large language models (LLMs), and foundation models? Are you looking for opportunities to build and deploy them on real-world problems at a truly vast scale with global impact? At AFT (Amazon Fulfillment Technologies) AI, a group of around 50 scientists and engineers, we are on a mission to build a new generation of dynamic end-to-end prediction models (and agents) for our warehouses based on GenAI and LLMs. These models will be able to understand and make use of petabytes of human-centered as well as process information, and learn to perceive and act to further improve our world-class customer experience – at Amazon scale. We are looking for a Sr. Applied Scientist who will become of the research leads in a team that builds next-level end-to-end process predictions and shift simulations for all systems in a full warehouse with the help of generative AI, graph neural networks, and LLMs. Together, we will be pushing beyond the state of the art in simulation and optimization of one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will dive deep into our fulfillment network, understand complex processes, and channel your insights to build large-scale machine learning models (LLMs and Transformer-based GNNs) that will be able to understand (and, eventually, optimize) the state and future of our buildings, network, and orders. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. You will work with and in a team of applied scientists to solve cutting-edge problems going beyond the published state of the art that will drive transformative change on a truly global scale. You will identify promising research directions, define parts of our research agenda and be a mentor to members of our team and beyond. You will influence the broader Amazon science community and communicate with technical, scientific and business leaders. If you thrive in a dynamic environment and are passionate about pushing the boundaries of generative AI, LLMs, and optimization systems, we want to hear from you. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and data science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. The AFT AI team has deep expertise developing cutting edge AI solutions at scale and successfully applying them to business problems in the Amazon Fulfillment Network. These solutions typically utilize machine learning and computer vision techniques, applied to text, sequences of events, images or video from existing or new hardware. We influence each stage of innovation from inception to deployment, developing a research plan, creating and testing prototype solutions, and shepherding the production versions to launch.
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: • Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries • Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them • Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution A day in the life ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
The Geospatial science team solves problems at the interface of ML/AI and GIS for Amazon's last mile delivery programs. We have access to Earth-scale datasets and use them to solve challenging problems that affect hundreds of thousands of transporters. We are looking for strong candidates to join the transportation science team which owns time estimation, GPS trajectory learning, and sensor fusion from phone data. You will join a team of GIS and ML domain experts and be expected to develop ML models, present research results to stakeholders, and collaborate with SDEs to implement the models in production. Key job responsibilities - Understand business problems and translate them into science problems - Develop ML models - Present research results - Write and publish papers - Write production code - Collaborate with SDEs and other scientists
IN, KA, Bengaluru
Job Description AOP(Analytics Operations and Programs) team is responsible for creating core analytics, insight generation and science capabilities for ROW Ops. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional Product Managers, Data Engineers, Data Scientists, Research Scientists, Applied Scientists and Business Intelligence Engineers using rigorous quantitative approaches to ensure high quality data/science products for our customers around the world. We are looking for an Applied Scientist to join our growing Science Team in Bangalore/Hyderabad. As an Applied Scientist, you are able to use a range of science methodologies to solve challenging business problems when the solution is unclear. You will be responsible for building ML models to solve complex business problems and test them in production environment. The scope of role includes defining the charter for the project and proposing solutions which align with org's priorities and production constraints but still create impact . You will achieve this by leveraging strong leadership and communication skills, data science skills and by acquiring domain knowledge pertaining to the delivery operations systems. You will provide ML thought leadership to technical and business leaders, and possess ability to think strategically about business, product, and technical challenges. You will also be expected to contribute to the science community by participating in science reviews and publishing in internal or external ML conferences. Our team solves a broad range of problems that can be scaled across ROW (Rest of the World including countries like India, Australia, Singapore, MENA and LATAM). Here is a glimpse of the problems that this team deals with on a regular basis: • Using live package and truck signals to adjust truck capacities in real-time • HOTW models for Last Mile Channel Allocation • Using LLMs to automate analytical processes and insight generation • Using ML to predict parameters which affect truck scheduling • Working with global science teams to predict Shipments Per Route for $MM savings • Deep Learning models to classify addresses based on various attributes Key job responsibilities 1. Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes 2. Design, develop, evaluate and deploy, innovative and highly scalable ML models 3. Work closely with other science and engineering teams to drive real-time model implementations 4. Work closely with Ops/Product partners to identify problems and propose machine learning solutions 5. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance 6. Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production 7. Leading projects and mentoring other scientists, engineers in the use of ML techniques As part of our team, candidate in this role will work in close collaboration with other applied scientists and cross functional teams on high visibility projects with direct exposure to the senior leadership team on regular basis. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include Truck Scheduling, LM capacity planning, LLM and so on.
US, WA, Seattle
Amazon continues to invest heavily in building our world class advertising business. Our products are strategically important to our Retail and Marketplace businesses, driving long term growth. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and strong bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Sponsored Products Monetization team is broadly responsible for pricing of ads on Amazon search pages, balancing short-term and long-term ad revenue growth to drive sustainable marketplace health. As a Senior Applied Scientist on our team, you will be responsible for defining the science and technical strategy for one of our most impactful marketplace controls, creating lasting value for Amazon and our advertising customers. You will help to identify unique opportunities to create customized and delightful shopping experience for our growing marketplaces worldwide. Your job will be identify big opportunities for the team that can help to grow Sponsored Products business working with retail partner teams, Product managers, Software engineers and PMs. You will have opportunity to design, run and analyze A/B experiments to improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills in an environment that thrives on creativity, experimentation, and product innovation. Key job responsibilities - Lead science, tech and business strategy and roadmap for Sponsored Products Monetization - Drive alignment across multiple organizations for science, engineering and product strategy to achieve business goals - Lead and mentor scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon and advertisers - Develop state of the art experimental approaches and ML models - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving - Research new and innovative machine learning approaches - Recruit Scientists to the team and provide mentorship
IN, KA, Bengaluru
The Amazon Artificial Generative Intelligence (AGI) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to enhance customer awareness of Amazon’s own brands and help customers find products they love. This interdisciplinary team of scientists and engineers incubates and develops disruptive solutions using cutting-edge technology to tackle some of the most challenging scientific problems at Amazon. To achieve this, the team utilizes methods from Natural Language Processing, deep learning, large language models (LLMs), multi-armed bandits, reinforcement learning, Bayesian optimization, causal and statistical inference, and econometrics to drive discovery throughout the customer journey. Our solutions are crucial to the success of Amazon’s private brands and serve as a model for discovery solutions across the company. This role presents a high-visibility opportunity for someone eager to make a business impact, delve into large-scale problems, drive measurable actions, and collaborate closely with scientists and engineers. As a team lead, you will be responsible for developing and coaching talent, guiding the team in designing and developing cutting-edge models, and working with business, marketing, and software teams to address key challenges. These challenges include building and improving models for sourcing, relevance, and CTR/CVR estimation, deploying reinforcement learning methods in production etc. In this role, you will be a technical leader in applied science research with substantial scope, impact, and visibility. A successful team lead will be an analytical problem solver who enjoys exploring data, leading problem-solving efforts, guiding the development of new frameworks, and engaging in investigations and algorithm development. You should be capable of effectively interfacing between technical teams and business stakeholders, pushing the boundaries of what is scientifically possible, and maintaining a sharp focus on measurable customer and business impact. Additionally, you will mentor and guide scientists to enhance the team's talent and expand the impact of your work.
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities As an Applied Scientist on this team you will: * Build machine learning models and utilize data analysis to deliver scalable solutions to business problems. * Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. * Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. * Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new predictive learning approaches for the sponsored products business. * Write production code to bring models into production.
US, WA, Seattle
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Sponsored Products DP Experience and Market place org is looking for a strong Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As an Applied Scientist in the Blended Widgets team, you will: * Conduct hands-on data analysis, and run regular A/B experiments, gather data, perform statistical analysis and deep dive, and communicate the impact to senior management * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgment * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Collaborate with software engineering teams to integrate successful experimental results into large-scale, highly complex Amazon production systems * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in New York, or Seattle.