The science behind Echo Frames

How the team behind Echo Frames delivered longer battery life and improved sound quality inside the slim form factor of a pair of eyeglasses.

When the team behind Amazon’s Echo Frames set out to improve the next generation of their product, they needed to strike a delicate balance. Customer feedback on earlier versions of the smart audio eyeglasses centered on three elements: longer battery life, more style options, and improved sound quality.

A man with a beard is seen wearing a pair of Echo Frames glasses. He is standing outside and is pictured in three-quarters view.
Echo Frames feature custom-built speech processing technology that drastically improves word recognition — key for interacting with Alexa in windy or noisy environments.

Achieving all three of those goals would be a challenge in itself; doing that inside the slim form factor of a pair of Alexa-enabled eyeglasses upped the ante.

“All three of those goals are in tension with one another,” says Adam Slaboski, senior manager of product management and product lead for Echo Frames. The easiest way to improve battery and audio would be to increase the size of the device, but that would conflict with feedback around the importance of design. Amping up bass to improve the audio experience would consume more battery, and so on.

Finding that sweet spot was a huge effort in engineering and customer understanding.
Adam Slaboski

“Finding that sweet spot was a huge effort in engineering and customer understanding," Slaboski says.

With Echo Frames (3rd Gen) and Carrera Smart Glasses with Alexa (designed in collaboration with Safilo, one of the world’s leading eyewear companies), the Smart Eyewear team met the challenge.

The smart glasses feature enhanced audio playback, with custom-built speech-processing technology that dramatically improves word recognition — key for interacting with Alexa in windy or noisy environments. The new range of frame styles come in a variety of sizes, and all come with a significant boost in battery life.

From the outside, Echo Frames still look like a pair of regular eyeglasses. “But we changed everything on the inside,” says Jean Wang, general manager and director of Smart Eyewear. “And we learned new lessons along the way.”

Here’s how Amazon engineers and product designers tackled all three customer demands.

Turning up the volume with open-ear audio

Like previous generations of Echo Frames, the current model uses open-ear audio. In addition to fitting the form factor of a pair of glasses, this allows users to maintain awareness of their surroundings while interacting with Alexa or enjoying audio entertainment.

Related content
Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

The open-ear audio design has been popular with users who are blind or have low vision, notes Jenai Akina, senior product manager for Echo Frames. “It’s really beneficial that it doesn’t obstruct a critical sense like hearing,” she explains. “That form factor is really helpful for daily interactions — especially when we want to be open to engage with our environment and the people around us. Open ear allows customers to maintain awareness, while providing access to a voice assistant.”

Open-ear audio brings a host of unique challenges to the engineering process. Typical headphones and earbuds block off the ear from the outside world, preventing air from escaping. That funnels more of the sound waves from the speakers into the user’s ears. With an open-ear design, sound has to travel farther, and there is less control over direction. That could lower the audio volume and reduce clarity — and importantly, audio could leak out to people standing nearby. The key is to drive the sound pressure as much as possible toward the user’s ears while minimizing the audio leakage.

By bringing people into the lab, we can simulate real environmental noise conditions like wind, background noise in a crowded restaurant, and the sound of cars on the road.
Scott Choi

In working to improve audio quality, the team continued to hone the directionality of the sound while also working to improve volume and bass. A technique called dipole speaker configuration helps to do both. In addition to a sound porthole located near the ear canal, the frames feature a second porthole that cancels unnecessary sound while amping up bass.

With input from in-house audio experts and instruments to analyze measurements like harmonic distortion, the team came up with a set of potential tuning solutions that met objective targets for audio quality. They then tested those “flavors” of tuning in the lab with several user groups.

“By bringing people into the lab, we can simulate real environmental-noise conditions like wind, background noise in a crowded restaurant, and the sound of cars on the road,” explains senior manager of audio Scott Choi. That allowed his team to understand environmental variables in a controlled setting.

With the feedback from those focus groups, the team then selected a few of the most popular tunings to push out to beta testing, where users could provide feedback on a weekly basis.

“We see how the feedback trends change with each tuning change, which gradually allows it to mature and converge into a certain tuning,” Choi says. The result is audio calibrated to maximize intelligibility and volume without leaking private conversations (or guilty-pleasure playlists).

The Echo Frame team used a rotating arch of microphones to lest leakage. This animation shows the array moving in circles around a mannequin wearing the Gen 3 prototype, creating a 3D sphere plot of audio leakage. Via this testing, the team was able to minimize leakage to the side and back.
The Echo Frame team used a rotating arch of microphones to lest leakage. The array moved in circles around a mannequin wearing the Gen 3 prototype, creating a 3D sphere plot of audio leakage. Via this testing, the team was able to minimize leakage to the side and back.

To test leakage, the audio team rigged up a rotating arch of microphones. The array moved in circles around a mannequin wearing the Gen 3 prototype, creating a 3-D sphere plot of audio leakage. Choi explains that they focused on minimizing leakage to the side and back, and ultimately, the speakers were moved much closer to the ear to help minimize leakage and improve loudness.

Leakage isn’t the only privacy consideration. The Echo Frame team also continues to innovate on protecting users from bad actors who may get hold of their smart glasses.

Related content
Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

Gen 2 protected users by requiring them to authenticate their sessions using a trusted phone. Without authentication, a user can’t invoke sensitive commands like “navigate me home,” unlocking a smart lock, or making a purchase. But customers didn’t like the added friction.

Now customers who enroll in Alexa Voice ID will be able to use their vocal fingerprints for authentication to receive responses to smart-home utterances.

“We’re the first on-the-go Alexa device to use Voice ID for privacy authentication,” Slaboski says.

Boosting battery life without cramping style

Gen 3 improves continuous music playback time to six hours, versus the four hours offered by the previous generation of Echo Frames. It also bumps battery life to up to 14 hours of moderate usage spread across playback, talk time, notifications, and Alexa interactions.

Delivering the desired loudness, bass, and audio quality while optimizing for battery life was a careful balance.
Ravi Sanapala

The team couldn’t simply slap on a bigger battery without making the Echo Frames look less like normal glasses. And with sound quality high on the priority list as well, the devices were going to need as much juice as ever. The team focused on trimming power use in standby mode, ensuring that the overall battery consumption would go down without weakening the speakers when users needed them.

“Delivering the desired loudness, bass, and audio quality while optimizing for battery life was a careful balance,” says senior product manager Ravi Sanapala. “We need the battery to last throughout as much of the day as possible and for Alexa to be available whenever users need it.”

The architectural changes in speaker placement helped keep power needs low while improving audio. The team also tweaked the placement of the battery itself, distributing its capacity differently than in Gen 2. Sanapala adds that algorithmic changes were key in balancing idle-battery conservation and on-demand device usage.

“We had to collaborate with all of our cross-functional teams to optimize everything,” Sanapala says.

Gen 3 also features an all-new charging stand, which is designed for compatibility with all frame shapes and keeps lenses upright, protecting them from scratches while wirelessly charging.

Making smart eyewear look like eyewear

Making glasses that are suitable for everyday wear has always been a priority. “One of our goals has always been to develop technology that appears when you need it and disappears when you don’t,” says Wang.

Previous models of Echo Frames have come in a single, one-size-fits-all style.

A person is seen wearing Echo Frames sunglasses outside. The person carries a notebook and is looking down at it, and there are some buildings and blue sky in the background.
The Echo Frames team consulted with both internal and external eyewear designers to review common and popular styles of frames, and to survey potential customers about their preferences.

“That was a very intentional move,” Wang explains. “We wanted to start simply and learn from customer feedback.”

Gen 2’s flexible spring hinge and adjustable temple tips ensured that the single size fit many different faces. In fact, Wang says, while the goal was to fit around half of all potential users, they’ve found that 85 percent of the adult population can comfortably wear the Gen 2 design.

But with Gen 3, Wang says, the team needed to go beyond designing glasses that looked typical. Customers wanted glasses that looked stylish, too.

The team consulted with both internal and external eyewear designers to review common and popular styles of frames, as well as “edgier” designs, and to survey potential customers about their preferences. After testing options with beta customers, they settled on a variety of styles in various colors that cover a range of aesthetics. They also switched to an acetate material to match the feel of high-end eyewear.

Related content
How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

While each style will still come in a single size, the range of designs will accommodate even more faces than Gen 2, as the collection spans narrow, medium, and wide fits. Each style features adjustable temple tips constructed out of silicone around a lightweight titanium core for better fit. And despite the boost in battery life, the temples of Gen 3 frames have actually been slimmed down. Wang notes that competitive products often place large batteries behind a user’s ears. But presenting Echo Frames users with something that bulky and uncomfortable was never on the table.

“We were working with really heavy constraints,” Wang says. “So we have been very deliberate in making design choices in the service of our customer. That’s challenged us to be innovative and really push the limits of what’s possible in the architecture of our designs.”

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.