The science behind Amazon’s spatial audio-processing technology

Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

With every new Echo device and upgrade, we challenge ourselves to bring the best audio experience to our customers at an affordable price. This year, we’re introducing Amazon’s own custom-built spatial audio-processing technology, designed to enhance stereo sound on compatible Echo devices.

The version of the technology on Echo Studio, for instance, is customized to the specific acoustic design of the speakers and employs digital-processing methods — such as upmixing and virtualization — so stereo audio, television shows, and movie soundtracks feel closer to the listener, with greater width, clarity, and presence. It turns the Echo Studio into a hi-fi audio system that mirrors that of a stereo reference arrangement. Vocal performances are more present in the center soundstage, and stereo panned instruments are better defined on the sides, thereby creating a more immersive sound experience that reproduces the artist's intent.

In this blog post, we break down how we built this spatial audio-processing technology with an emphasis on the way humans perceive sound — or psychoacoustics — by using a combination of crosstalk cancellation, speaker beamforming, and upmixing to create a room-filling, spatial audio experience.

Psychoacoustics: Width, depth, and listening zones

Throughout development, we characterize the stereo image by its psychoacoustic qualities, including width, depth, and listening zones. We then investigate how sound waves interact with listeners in various room shapes and sizes and how signal-processing methods affect the listener’s experience.

Stereo angle.png
Echo Studio virtualizes the stereo sound field at the listener’s location in the far field.

Width

Width: The angular extent (wide vs. narrow) of localizable elements in the stereo image along the horizontal — or azimuth — plane.

When determining the width of a sound field, we first consider localizable elements such as a point-source that would induce time and level differences in the acoustic responses at the listener’s two ears. To model this phenomenon, it is helpful to compare the listening experiences on headphones vs. a loudspeaker in terms of the separation of left and right ear responses.

Unlike loudspeaker listening, headphone listening lacks a crosstalk path, as illustrated in the image below. In order to make headphone listening realistic, we can model crosstalk from the point-source to the two ears using an all-pass signal-processing filter for one ear and a delayed low-pass filter for the other ear. The two filters approximate and parameterize the listener’s ear responses with respect to their relative head-related transfer functions (HRTFs), which contain important cues that the human ear uses to localize sound. Moreover, the filter design ensures that there’s minimal modification to the signal spectra — or tonal balance — and therefore preserves the original playback content.

Crosstalk simulation.png
All-pass and delayed low-pass filters approximate the angle-dependent relative ipsilateral (same side of the body) and contralateral (opposite side of the body) head-related transfer functions (HRTFs).

However, unlike headphones, an external speaker can create its own crosstalk for the listener, depending on its placement. For example, the left and right speaker transducers, or drivers, on the Echo Studio are narrowly spaced within the device, whereas the speakers in a standard stereo pair are 60 degrees apart relative to the listener.

With the spatial audio-processing technology on Echo Studio, we decouple the crosstalk of the driver pair by modeling and then inverting the system of equations between each driver and the listener’s ears, via crosstalk cancellation (CTC) methods. If we have more than two drivers, then the more general formulation is called null-steering, where filters are designed for all the drivers so that their acoustic responses cancel at one ear.

In both cases, we can normalize the filter design to satisfy a target cancellation gain curve defined by the power ratio of the acoustic energy at the ipsilateral (same side of the body) and contralateral (opposite side of the body) ears across frequencies. This prevents overfitting the cancellation to an exact location, since a listener may be at varying distances or not perfectly centered to the device.

Once the driver’s CTC filters are designed for stereo inputs, they can be combined with the approximated HRTF filters that introduce the amount of crosstalk consistent with a stereo reference system.

CTC filters.png
Stereo virtualization for external speaker playback specifies an additional pair of crosstalk cancellation (CTC) filters for nulling the contralateral acoustic response. The relative transfer function (RTF) filter realizes the ratio of the two CTC filter responses.

Depth

Depth: The distance (frontal vs. recessed) of the perceived sound field from the listener.

The distance at which sound elements in an audio track localize correlates with the relationship — or coherence — of the two signals between the sound source and the listener’s ears. For example, a simple left or right signal from a speaker is easy to understand, but if the audio mixes with the room’s reverberation, the audio clarity decreases, and the audio sounds recessed.

In speaker playback, however, we contend with the speaker directivity and its interaction with the room environment. For example, a direct acoustic path between a speaker and a listener preserves the desired clarity of the original content. But when the acoustic signal reflects off of walls, the loss in coherence recesses the perceived sound field and causes elements to smear spatially. This is why tracks heard anechoically or on headphones appear closer — or even inside the listener’s head — and clearer than tracks heard over external speakers in a reverberant room. In the first case, the acoustic response is direct from the driver to the listener’s ears, while external speakers must contend with the effects of the room environment.

Beamformer impact.png
Strong room reflections and reverberation mask the binaural cues and reduce the perceived distance of the soundstage. Speaker beamforming pushes the soundstage forward by attenuating the indirect sound energy, increasing the critical distance and coherence.

As part of our custom-built spatial audio technology, we can control the speaker directivity via careful beamforming. The speaker drivers can be filtered to produce a sound field with a directivity that sums coherently on-axis and cancels off-axis. That is, the acoustic response is greatest when the listener is lined up in front of the speaker and, conversely, weakest when the listener is to the side at +/- 90 degrees.

Therefore, one way to design with such directivity is to place two nulls at +/- 90-degree angles and either control for the cancellation gain between on-/off-axis power responses or the shape of the nulls as a function of azimuth. The resulting beam pattern is one with a main lobe that is wide enough for the direct path to be strong, at up to a +/- 45-degree azimuth listening window, before quickly tapering off to minimize the acoustic energy further off-axis, which would reflect off the walls.

This has the intended effect of making stereo audio feel closer to the listener, with greater clarity than is typical in an acoustically untreated listening environment like a living room. The effect is similar to how theaters reproduce a frontal soundstage over different seating areas, despite the speakers’ being far away.

Beamforming.png
The speaker beamformer increases directivity after placing two off-axis nulls in the midrange frequencies. The acoustic responses over frequency and azimuth contrast that of simple matrix mixing with the beamformer realized in relative-transfer-function (RTF) form.

Listening zones

Listening zone: The mapping between the listening area and the stereo soundstage.

A listening “sweet spot” — the stereo image in a hi-fi audio system reference stereo pair — is best reproduced when the listener’s location forms an equilateral triangle with the stereo speaker pair. If the listener angle exceeds +/- 30 degrees, then a hole is created in the listener’s phantom center due to the loss of inter-speaker-to-ear coherence as room reflections grow stronger. Important elements of the audio mix, such as vocals, lose their presence. If the listener angle falls below +/- 30 degrees, then the stereo image narrows, as audio elements collapse toward the center. If the listener’s location is off-axis, then the stereo image biases towards one side or the other.

Phantom center.png
The stereo field relies on a “phantom center”, where important lead vocals and instruments are mixed. The center content can be separated from the original stereo left and right input after the mid-/side decomposition.

To combat this, our spatial audio technology aims to reproduce the stereo image over the largest listening area. In practice, the intended listening area of CTC-filtered playback conflicts with that of beamforming designs that control for speaker directivity. We can achieve a compromise by performing stereo upmixing and then applying different beamforming filters to each channel. For example, we can upmix into left, right, and center (LRC), where the center is minimally correlated with left-minus-right in the mid-/side decomposition.

The upmixed left channel is processed through the CTC filter that nulls the right ear after virtualization, the upmixed right channel nulls the left ear, and the center channel is beamformed with a wide main lobe. This means that vocal performances are more present in the center, while the stereo panned instruments are better defined on the side, creating a more immersive sound experience for the listener.

Signal flow.png
After upmixing, the virtualization and the crosstalk cancellation (CTC) widens the left and right channels, and the midrange beamformer pushes the center content forward. Subsequent delay blocks phase-align the faster of the two paths.

We’re continuing to iterate and refine technology across the Echo portfolio to bring the best audio experience to our customers. If you’d like to learn more about beamforming and speaker directivity in room acoustics, read papers published by our engineering team: “Fast source-room-receiver modeling”, in EUSIPCO 2020, and “Spherical harmonic beamformer designs", in EURASIP 2021.

Research areas

Related content

IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?