The science behind Amazon’s spatial audio-processing technology

Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

With every new Echo device and upgrade, we challenge ourselves to bring the best audio experience to our customers at an affordable price. This year, we’re introducing Amazon’s own custom-built spatial audio-processing technology, designed to enhance stereo sound on compatible Echo devices.

The version of the technology on Echo Studio, for instance, is customized to the specific acoustic design of the speakers and employs digital-processing methods — such as upmixing and virtualization — so stereo audio, television shows, and movie soundtracks feel closer to the listener, with greater width, clarity, and presence. It turns the Echo Studio into a hi-fi audio system that mirrors that of a stereo reference arrangement. Vocal performances are more present in the center soundstage, and stereo panned instruments are better defined on the sides, thereby creating a more immersive sound experience that reproduces the artist's intent.

In this blog post, we break down how we built this spatial audio-processing technology with an emphasis on the way humans perceive sound — or psychoacoustics — by using a combination of crosstalk cancellation, speaker beamforming, and upmixing to create a room-filling, spatial audio experience.

Psychoacoustics: Width, depth, and listening zones

Throughout development, we characterize the stereo image by its psychoacoustic qualities, including width, depth, and listening zones. We then investigate how sound waves interact with listeners in various room shapes and sizes and how signal-processing methods affect the listener’s experience.

Stereo angle.png
Echo Studio virtualizes the stereo sound field at the listener’s location in the far field.

Width

Width: The angular extent (wide vs. narrow) of localizable elements in the stereo image along the horizontal — or azimuth — plane.

When determining the width of a sound field, we first consider localizable elements such as a point-source that would induce time and level differences in the acoustic responses at the listener’s two ears. To model this phenomenon, it is helpful to compare the listening experiences on headphones vs. a loudspeaker in terms of the separation of left and right ear responses.

Unlike loudspeaker listening, headphone listening lacks a crosstalk path, as illustrated in the image below. In order to make headphone listening realistic, we can model crosstalk from the point-source to the two ears using an all-pass signal-processing filter for one ear and a delayed low-pass filter for the other ear. The two filters approximate and parameterize the listener’s ear responses with respect to their relative head-related transfer functions (HRTFs), which contain important cues that the human ear uses to localize sound. Moreover, the filter design ensures that there’s minimal modification to the signal spectra — or tonal balance — and therefore preserves the original playback content.

Crosstalk simulation.png
All-pass and delayed low-pass filters approximate the angle-dependent relative ipsilateral (same side of the body) and contralateral (opposite side of the body) head-related transfer functions (HRTFs).

However, unlike headphones, an external speaker can create its own crosstalk for the listener, depending on its placement. For example, the left and right speaker transducers, or drivers, on the Echo Studio are narrowly spaced within the device, whereas the speakers in a standard stereo pair are 60 degrees apart relative to the listener.

With the spatial audio-processing technology on Echo Studio, we decouple the crosstalk of the driver pair by modeling and then inverting the system of equations between each driver and the listener’s ears, via crosstalk cancellation (CTC) methods. If we have more than two drivers, then the more general formulation is called null-steering, where filters are designed for all the drivers so that their acoustic responses cancel at one ear.

In both cases, we can normalize the filter design to satisfy a target cancellation gain curve defined by the power ratio of the acoustic energy at the ipsilateral (same side of the body) and contralateral (opposite side of the body) ears across frequencies. This prevents overfitting the cancellation to an exact location, since a listener may be at varying distances or not perfectly centered to the device.

Once the driver’s CTC filters are designed for stereo inputs, they can be combined with the approximated HRTF filters that introduce the amount of crosstalk consistent with a stereo reference system.

CTC filters.png
Stereo virtualization for external speaker playback specifies an additional pair of crosstalk cancellation (CTC) filters for nulling the contralateral acoustic response. The relative transfer function (RTF) filter realizes the ratio of the two CTC filter responses.

Depth

Depth: The distance (frontal vs. recessed) of the perceived sound field from the listener.

The distance at which sound elements in an audio track localize correlates with the relationship — or coherence — of the two signals between the sound source and the listener’s ears. For example, a simple left or right signal from a speaker is easy to understand, but if the audio mixes with the room’s reverberation, the audio clarity decreases, and the audio sounds recessed.

In speaker playback, however, we contend with the speaker directivity and its interaction with the room environment. For example, a direct acoustic path between a speaker and a listener preserves the desired clarity of the original content. But when the acoustic signal reflects off of walls, the loss in coherence recesses the perceived sound field and causes elements to smear spatially. This is why tracks heard anechoically or on headphones appear closer — or even inside the listener’s head — and clearer than tracks heard over external speakers in a reverberant room. In the first case, the acoustic response is direct from the driver to the listener’s ears, while external speakers must contend with the effects of the room environment.

Beamformer impact.png
Strong room reflections and reverberation mask the binaural cues and reduce the perceived distance of the soundstage. Speaker beamforming pushes the soundstage forward by attenuating the indirect sound energy, increasing the critical distance and coherence.

As part of our custom-built spatial audio technology, we can control the speaker directivity via careful beamforming. The speaker drivers can be filtered to produce a sound field with a directivity that sums coherently on-axis and cancels off-axis. That is, the acoustic response is greatest when the listener is lined up in front of the speaker and, conversely, weakest when the listener is to the side at +/- 90 degrees.

Therefore, one way to design with such directivity is to place two nulls at +/- 90-degree angles and either control for the cancellation gain between on-/off-axis power responses or the shape of the nulls as a function of azimuth. The resulting beam pattern is one with a main lobe that is wide enough for the direct path to be strong, at up to a +/- 45-degree azimuth listening window, before quickly tapering off to minimize the acoustic energy further off-axis, which would reflect off the walls.

This has the intended effect of making stereo audio feel closer to the listener, with greater clarity than is typical in an acoustically untreated listening environment like a living room. The effect is similar to how theaters reproduce a frontal soundstage over different seating areas, despite the speakers’ being far away.

Beamforming.png
The speaker beamformer increases directivity after placing two off-axis nulls in the midrange frequencies. The acoustic responses over frequency and azimuth contrast that of simple matrix mixing with the beamformer realized in relative-transfer-function (RTF) form.

Listening zones

Listening zone: The mapping between the listening area and the stereo soundstage.

A listening “sweet spot” — the stereo image in a hi-fi audio system reference stereo pair — is best reproduced when the listener’s location forms an equilateral triangle with the stereo speaker pair. If the listener angle exceeds +/- 30 degrees, then a hole is created in the listener’s phantom center due to the loss of inter-speaker-to-ear coherence as room reflections grow stronger. Important elements of the audio mix, such as vocals, lose their presence. If the listener angle falls below +/- 30 degrees, then the stereo image narrows, as audio elements collapse toward the center. If the listener’s location is off-axis, then the stereo image biases towards one side or the other.

Phantom center.png
The stereo field relies on a “phantom center”, where important lead vocals and instruments are mixed. The center content can be separated from the original stereo left and right input after the mid-/side decomposition.

To combat this, our spatial audio technology aims to reproduce the stereo image over the largest listening area. In practice, the intended listening area of CTC-filtered playback conflicts with that of beamforming designs that control for speaker directivity. We can achieve a compromise by performing stereo upmixing and then applying different beamforming filters to each channel. For example, we can upmix into left, right, and center (LRC), where the center is minimally correlated with left-minus-right in the mid-/side decomposition.

The upmixed left channel is processed through the CTC filter that nulls the right ear after virtualization, the upmixed right channel nulls the left ear, and the center channel is beamformed with a wide main lobe. This means that vocal performances are more present in the center, while the stereo panned instruments are better defined on the side, creating a more immersive sound experience for the listener.

Signal flow.png
After upmixing, the virtualization and the crosstalk cancellation (CTC) widens the left and right channels, and the midrange beamformer pushes the center content forward. Subsequent delay blocks phase-align the faster of the two paths.

We’re continuing to iterate and refine technology across the Echo portfolio to bring the best audio experience to our customers. If you’d like to learn more about beamforming and speaker directivity in room acoustics, read papers published by our engineering team: “Fast source-room-receiver modeling”, in EUSIPCO 2020, and “Spherical harmonic beamformer designs", in EURASIP 2021.

Related content

US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Do you have a strong machine learning background and want to help build new speech and language technology? Amazon is looking for PhD students who are ready to tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will develop and implement novel scalable algorithms and modeling techniques to advance the state-of-the-art in technology areas at the intersection of ML, NLP, search, and deep learning. You will work side-by-side with global experts in speech and language to solve challenging groundbreaking research problems on production scale data. The ideal candidate must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon has positions available for Natural Language Processing & Speech Intern positions in multiple locations across the United States. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. Please visit our website to stay updated with the research our teams are working on: https://www.amazon.science/research-areas/conversational-ai-natural-language-processing
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a Masters student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a PhD student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for Masters or PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, and more! We are combining computer vision, mobile robots, advanced end-of-arm tooling and high-degree of freedom movement to solve real-world problems at huge scale. As an intern, you will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. You will own the design and development of end-to-end systems and have the opportunity to write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, and more! We are combining computer vision, mobile robots, advanced end-of-arm tooling and high-degree of freedom movement to solve real-world problems at huge scale. As an intern, you will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. You will own the design and development of end-to-end systems and have the opportunity to write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a Masters or PhD student interested in machine learning? We are looking for skilled scientists capable of putting Machine Learning theory into practice through experimentation and invention, leveraging machine learning techniques (such as random forest, Bayesian networks, ensemble learning, clustering, etc.), and implementing learning systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.