The science behind Amazon’s spatial audio-processing technology

Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

With every new Echo device and upgrade, we challenge ourselves to bring the best audio experience to our customers at an affordable price. This year, we’re introducing Amazon’s own custom-built spatial audio-processing technology, designed to enhance stereo sound on compatible Echo devices.

The version of the technology on Echo Studio, for instance, is customized to the specific acoustic design of the speakers and employs digital-processing methods — such as upmixing and virtualization — so stereo audio, television shows, and movie soundtracks feel closer to the listener, with greater width, clarity, and presence. It turns the Echo Studio into a hi-fi audio system that mirrors that of a stereo reference arrangement. Vocal performances are more present in the center soundstage, and stereo panned instruments are better defined on the sides, thereby creating a more immersive sound experience that reproduces the artist's intent.

In this blog post, we break down how we built this spatial audio-processing technology with an emphasis on the way humans perceive sound — or psychoacoustics — by using a combination of crosstalk cancellation, speaker beamforming, and upmixing to create a room-filling, spatial audio experience.

Psychoacoustics: Width, depth, and listening zones

Throughout development, we characterize the stereo image by its psychoacoustic qualities, including width, depth, and listening zones. We then investigate how sound waves interact with listeners in various room shapes and sizes and how signal-processing methods affect the listener’s experience.

Stereo angle.png
Echo Studio virtualizes the stereo sound field at the listener’s location in the far field.

Width

Width: The angular extent (wide vs. narrow) of localizable elements in the stereo image along the horizontal — or azimuth — plane.

When determining the width of a sound field, we first consider localizable elements such as a point-source that would induce time and level differences in the acoustic responses at the listener’s two ears. To model this phenomenon, it is helpful to compare the listening experiences on headphones vs. a loudspeaker in terms of the separation of left and right ear responses.

Unlike loudspeaker listening, headphone listening lacks a crosstalk path, as illustrated in the image below. In order to make headphone listening realistic, we can model crosstalk from the point-source to the two ears using an all-pass signal-processing filter for one ear and a delayed low-pass filter for the other ear. The two filters approximate and parameterize the listener’s ear responses with respect to their relative head-related transfer functions (HRTFs), which contain important cues that the human ear uses to localize sound. Moreover, the filter design ensures that there’s minimal modification to the signal spectra — or tonal balance — and therefore preserves the original playback content.

Crosstalk simulation.png
All-pass and delayed low-pass filters approximate the angle-dependent relative ipsilateral (same side of the body) and contralateral (opposite side of the body) head-related transfer functions (HRTFs).

However, unlike headphones, an external speaker can create its own crosstalk for the listener, depending on its placement. For example, the left and right speaker transducers, or drivers, on the Echo Studio are narrowly spaced within the device, whereas the speakers in a standard stereo pair are 60 degrees apart relative to the listener.

With the spatial audio-processing technology on Echo Studio, we decouple the crosstalk of the driver pair by modeling and then inverting the system of equations between each driver and the listener’s ears, via crosstalk cancellation (CTC) methods. If we have more than two drivers, then the more general formulation is called null-steering, where filters are designed for all the drivers so that their acoustic responses cancel at one ear.

In both cases, we can normalize the filter design to satisfy a target cancellation gain curve defined by the power ratio of the acoustic energy at the ipsilateral (same side of the body) and contralateral (opposite side of the body) ears across frequencies. This prevents overfitting the cancellation to an exact location, since a listener may be at varying distances or not perfectly centered to the device.

Once the driver’s CTC filters are designed for stereo inputs, they can be combined with the approximated HRTF filters that introduce the amount of crosstalk consistent with a stereo reference system.

CTC filters.png
Stereo virtualization for external speaker playback specifies an additional pair of crosstalk cancellation (CTC) filters for nulling the contralateral acoustic response. The relative transfer function (RTF) filter realizes the ratio of the two CTC filter responses.

Depth

Depth: The distance (frontal vs. recessed) of the perceived sound field from the listener.

The distance at which sound elements in an audio track localize correlates with the relationship — or coherence — of the two signals between the sound source and the listener’s ears. For example, a simple left or right signal from a speaker is easy to understand, but if the audio mixes with the room’s reverberation, the audio clarity decreases, and the audio sounds recessed.

In speaker playback, however, we contend with the speaker directivity and its interaction with the room environment. For example, a direct acoustic path between a speaker and a listener preserves the desired clarity of the original content. But when the acoustic signal reflects off of walls, the loss in coherence recesses the perceived sound field and causes elements to smear spatially. This is why tracks heard anechoically or on headphones appear closer — or even inside the listener’s head — and clearer than tracks heard over external speakers in a reverberant room. In the first case, the acoustic response is direct from the driver to the listener’s ears, while external speakers must contend with the effects of the room environment.

Beamformer impact.png
Strong room reflections and reverberation mask the binaural cues and reduce the perceived distance of the soundstage. Speaker beamforming pushes the soundstage forward by attenuating the indirect sound energy, increasing the critical distance and coherence.

As part of our custom-built spatial audio technology, we can control the speaker directivity via careful beamforming. The speaker drivers can be filtered to produce a sound field with a directivity that sums coherently on-axis and cancels off-axis. That is, the acoustic response is greatest when the listener is lined up in front of the speaker and, conversely, weakest when the listener is to the side at +/- 90 degrees.

Therefore, one way to design with such directivity is to place two nulls at +/- 90-degree angles and either control for the cancellation gain between on-/off-axis power responses or the shape of the nulls as a function of azimuth. The resulting beam pattern is one with a main lobe that is wide enough for the direct path to be strong, at up to a +/- 45-degree azimuth listening window, before quickly tapering off to minimize the acoustic energy further off-axis, which would reflect off the walls.

This has the intended effect of making stereo audio feel closer to the listener, with greater clarity than is typical in an acoustically untreated listening environment like a living room. The effect is similar to how theaters reproduce a frontal soundstage over different seating areas, despite the speakers’ being far away.

Beamforming.png
The speaker beamformer increases directivity after placing two off-axis nulls in the midrange frequencies. The acoustic responses over frequency and azimuth contrast that of simple matrix mixing with the beamformer realized in relative-transfer-function (RTF) form.

Listening zones

Listening zone: The mapping between the listening area and the stereo soundstage.

A listening “sweet spot” — the stereo image in a hi-fi audio system reference stereo pair — is best reproduced when the listener’s location forms an equilateral triangle with the stereo speaker pair. If the listener angle exceeds +/- 30 degrees, then a hole is created in the listener’s phantom center due to the loss of inter-speaker-to-ear coherence as room reflections grow stronger. Important elements of the audio mix, such as vocals, lose their presence. If the listener angle falls below +/- 30 degrees, then the stereo image narrows, as audio elements collapse toward the center. If the listener’s location is off-axis, then the stereo image biases towards one side or the other.

Phantom center.png
The stereo field relies on a “phantom center”, where important lead vocals and instruments are mixed. The center content can be separated from the original stereo left and right input after the mid-/side decomposition.

To combat this, our spatial audio technology aims to reproduce the stereo image over the largest listening area. In practice, the intended listening area of CTC-filtered playback conflicts with that of beamforming designs that control for speaker directivity. We can achieve a compromise by performing stereo upmixing and then applying different beamforming filters to each channel. For example, we can upmix into left, right, and center (LRC), where the center is minimally correlated with left-minus-right in the mid-/side decomposition.

The upmixed left channel is processed through the CTC filter that nulls the right ear after virtualization, the upmixed right channel nulls the left ear, and the center channel is beamformed with a wide main lobe. This means that vocal performances are more present in the center, while the stereo panned instruments are better defined on the side, creating a more immersive sound experience for the listener.

Signal flow.png
After upmixing, the virtualization and the crosstalk cancellation (CTC) widens the left and right channels, and the midrange beamformer pushes the center content forward. Subsequent delay blocks phase-align the faster of the two paths.

We’re continuing to iterate and refine technology across the Echo portfolio to bring the best audio experience to our customers. If you’d like to learn more about beamforming and speaker directivity in room acoustics, read papers published by our engineering team: “Fast source-room-receiver modeling”, in EUSIPCO 2020, and “Spherical harmonic beamformer designs", in EURASIP 2021.

Research areas

Related content

US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We work with Alexa and multiple other teams to research and develop advanced state-of-the-art speech technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Research Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As a Research Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business.
US, WA, Seattle
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. In 2019, Amazon co-founded The Climate Pledge and made a commitment to achieve net-zero carbon by 2040 —10 years ahead of the Paris Agreement. We invited others to join us and there are now more than 300 businesses and organizations across 51 industries and 29 countries that have signed the Pledge, which means we are collectively coming at the climate crisis from nearly every sector and nearly every angle. As part of our efforts to decarbonize our business, we became the world’s largest corporate purchaser of renewable energy in 2020, and last year, we reached 85% renewable energy across our business, and are on a path to power our operations with 100% renewable energy by 2025. We recently announced that AWS will be water positive by 2030, returning more water to communities than it uses in its direct operations. The company also announced its 2021 global water use efficiency (WUE) metric of 0.25 liters of water per kilowatt-hour, demonstrating AWS’s leadership in water efficiency among cloud providers. To learn more about AWS’s water+ commitment visit: Water Stewardship. Come join the team that is building the tools and innovative technology to manage our growing portfolio of renewable energy investments, including solar, on-shore and off-shore wind farms. Key job responsibilities As an data scientist, you will employ machine learning and analytics to create scalable solutions for problems in sustainable energy space. You will dissect large historical business data sets to enhance and streamline essential processes. You will partner with data and software teams to create models for predictive insights and establish automated methods for large data analysis. A day in the life To learn more, you can visit: amazon sustainability in the cloud About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. Concretely, you will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product. You will also be challenged to think several steps ahead so that the solutions you are building today will scale well with future growth and objective (e.g.: sustainability). You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. You will have the opportunity to thrive in a highly collaborative, creative, analytical, and fast-paced environment oriented around building the world’s most flexible and effective transportation planning and network design management technology. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of 15 scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues.
US, WA, Seattle
The PeopleInsight (PI) org focuses on improving employee experience at Amazon, driving productivity and retention, and resulting in a motivated workforce of over 1.5 million associates and corporate employees. These are the questions we ask — Are we facilitating the right conversations to build an engaged workforce? What trends are we seeing in our employee data and what should managers do about it? How do we solve customer problems in the most efficient way possible? If these challenges sound interesting to you, you want to be a part of building ‘first of their kind’ products, and you are passionate about putting employee experience first, consider the PeopleInsight team. PI helps Amazon drive improvements in employee talent outcomes (e.g., job satisfaction and retention), and strive to be Earth’s Best Employer through scalable technology. PI is looking for a customer-obsessed Data Scientist for Employee Engagement Services, a suite of internal employee engagement and recognition products supporting Amazonians WW, with a strong track record of delivering results and proven research experience. This role will own and execute strategic cross-functional employee engagement experiments, analysis and research initiatives across Operations and Corporate audiences for high CSAT products. The Data Scientist must love extracting, cleaning and transforming high volume of data into actionable business information and be able to drive actionable insights. The data scientist will partner with Product, UX and Dev teams to own end-to-end business problems and metrics with a direct impact on employee experience. Success in this role will include influencing within your team and mentoring peers. The problems you will consider will be difficult to solve and often require a range of data science methodologies combined with subject matter expertise. You will need to be capable of gathering and using complex data set across domains. You will deliver artifacts on medium size projects, define the methodology, and own the analysis. Your findings will affect important business decisions. Solut Key job responsibilities • Implement statistical methods to solve specific business problems utilizing code (Python, R, Scala, etc.). • Development of user classification models and other predictive models to enable a personalized experience for a user. • Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. • Collaborate with product management, software developers, data engineering, and business leaders to define product requirements, provide analytical support, and communicate feedback; develop, test and deploy a wide range of statistical, econometric, and machine learning models. • Build customer-facing reporting tools to provide insights and metrics which track model performance and explain variance. • Communicate verbally and in writing to business customers with various levels of technical knowledge, educating them about our solutions, as well as sharing insights and recommendations. • Earn the trust of your customers by continuing to constantly obsess over their needs and helping them solve their problems by leveraging technology About the team The PeopleInsight team is a collaborative group of Business Intelligence Engineers, Data Scientists, Data Engineers, Research Scientists, Product Managers, Software Development Engineers, Designers and Researchers that studies a workforce numbering in the hundreds of thousands. Our work is dedicated to empowering leaders and enabling action through data and science to improve the workplace experience of associates and ensure Amazon is Earth's Best Employer.
US, WA, Seattle
This is a unique opportunity for a postdoc to work on research projects that investigate state of the art NLP, IR, and LLM approaches for understanding retail products and their pricing. This will include working with billion-scale datasets and investigating how the world knowledge captured by LLMs reflects real world prices, and investigating more advanced prompting and reasoning techniques to construct large knowledge graphs that are specialized for various pricing use cases such as probabilistic price estimation, as well as error detection and correction. Key job responsibilities In this role you will: • Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. • Publish your innovation in top-tier academic venues and hone your presentation skills. • Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise. About the team The retail pricing science team is a centralized diverse team of STEM scientists that develop statistical, ML, RL, optimization and economic models that drive pricing for products sold by Amazon worldwide, as well as monitoring of prices and experimentations in pricing. The team has a dual focus on competitiveness and long term financial optimality.
IL, Haifa
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
US, CA, East Palo Alto
AWS Analytics is looking for a passionate, inventive Applied Scientist with a strong background in either machine learning, programming languages or databases to help create industry-leading analytics experiences powered by generative AI, machine learning, and program analysis. AWS provides a comprehensive set of analytics services for all data analytics needs and enables organizations of all sizes and industries to reinvent their business with data. From storage and management, data governance, actions, and experiences, AWS offers purpose-built services that provide the best price-performance, scalability, and lowest cost. We are a team dedicated to delivering transformative, science-driven analytics experiences for Amazon customers and having fun doing so. Our leadership team fosters an inclusive team culture and encourages work-life balance to bring out the best in each team member. Collaboration and mentorship are key tenets of our fabric. We are a growing team dedicated to supporting new members achieve their aspirations. Key job responsibilities As part of the AWS Analytics science team you will have the opportunity to apply your skills in machine learning, program analysis, and databases to impact some of the largest analytics services in the industry and their customers. You will innovate by designing and building agent-based solutions orchestrating foundation models, machine learning models, and program analyses to simplify AWS customers’ analytics journey and optimize their cost-performance profile. You will collaborate with a talented team of applied science peers to drive scientific impact and with engineering, product, and business leaders to launch your work in production at Amazon scale. A day in the life A mix of the following activities: talking to product leaders and customers to define science features; researching the state of the art and creating science plans to build them; building and rigorously benchmarking the science implementations of such features; partnering with engineering teams to onboard science work and launch it in production; preparing, publishing, and presenting scientific work at top-tier science venues and evangelizing it within the company; upgrading your science knowledge by participating in reading groups and science presentations by internal or external scientists; mentoring applied science interns and science peers in all of the above functions. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, East Palo Alto
AWS Analytics is looking for a passionate, inventive Applied Scientist with a strong background in either machine learning, programming languages or databases to help create industry-leading analytics experiences powered by generative AI, machine learning, and program analysis. AWS provides a comprehensive set of analytics services for all data analytics needs and enables organizations of all sizes and industries to reinvent their business with data. From storage and management, data governance, actions, and experiences, AWS offers purpose-built services that provide the best price-performance, scalability, and lowest cost. We are a team dedicated to delivering transformative, science-driven analytics experiences for Amazon customers and having fun doing so. Our leadership team fosters an inclusive team culture and encourages work-life balance to bring out the best in each team member. Collaboration and mentorship are key tenets of our fabric. We are a growing team dedicated to supporting new members achieve their aspirations. Key job responsibilities As part of the AWS Analytics science team you will have the opportunity to apply your skills in machine learning, program analysis, and databases to impact some of the largest analytics services in the industry and their customers. You will innovate by designing and building agent-based solutions orchestrating foundation models, machine learning models, and program analyses to simplify AWS customers’ analytics journey and optimize their cost-performance profile. You will collaborate with a talented team of applied science peers to drive scientific impact and with engineering, product, and business leaders to launch your work in production at Amazon scale. A day in the life A mix of the following activities: talking to product leaders and customers to define science features; researching the state of the art and creating science plans to build them; building and rigorously benchmarking the science implementations of such features; partnering with engineering teams to onboard science work and launch it in production; preparing, publishing, and presenting scientific work at top-tier science venues and evangelizing it within the company; upgrading your science knowledge by participating in reading groups and science presentations by internal or external scientists; mentoring applied science interns and science peers in all of the above functions. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, WA, Seattle
Do you want to create the greatest-possible worldwide impact in Robotics? Amazon has the world's most exciting treasure trove of robotics challenges. At Amazon Robotics we build high-performance, real-time robotic systems that can perceive, learn, and act intelligently alongside humans—at Amazon scale. Amazon Robotics invents and scales AI systems for robotics in fulfillment. Our mission is to enable robots to interact safely, efficiently, and fluently high density real-world fulfillment centers. Our AI solutions enable robots to learn from their own experiences, from each other, and from humans to build intelligence that feeds itself. We hire and develop collaborative subject matter experts in AI with a focus on computer vision, deep learning, semi-supervised and unsupervised learning. We target high-impact algorithmic unlocks in areas such as scene and activity understanding, large scale generative models, closed-loop control, robotic grasping and manipulation—all of which have high-value impact for our current and future fulfillment networks. We are seeking a hands-on, seasoned Applied Scientists who will be deep in code and algorithms; who are technically strong in building scalable vision systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation. As a Applied Scientist, you will contribute to the research and development of advanced robotic systems; your work along with other top-notch scientists and engineers will deliver the world's most scalable and robust robotic systems. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and active learning. As a Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on challenging customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a collaborative team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!