Top row, left to right, Ruomeng Cui, Christos Faloutsos, Nicholas Kullman, and Niklas Karlsson; bottom row, left to right, Joan Feigenbaum, Hugo Krawczyk, Aaditya Ramdas, and Aaron Roth.
Top row, left to right, Ruomeng Cui, Christos Faloutsos, Nicholas Kullman, and Niklas Karlsson; bottom row, left to right, Joan Feigenbaum, Hugo Krawczyk, Aaditya Ramdas, and Aaron Roth.

Recent honors and awards for Amazon scientists

Researchers honored for their contributions to the scientific community in 2023.

Ruomeng Cui won Management Science best paper award

Ruomeng Cui, an Amazon Visiting Academic with Amazon’s Supply Chain Optimization Technologies (SCOT) team, won the 2023 Management Science Best Paper Award in Operations Management.

Cui, who is on leave from her role as an associate professor in the department of Information System and Operations Management at the Goizueta Business School, Emory University, won the award along with her co-authors Jun Li and Dennis Zhang for their 2020 paper, “Reducing discrimination with reviews in the sharing economy: Evidence from field experiments on Airbnb.”

Their paper explored ways to reduce “widespread discrimination by hosts against guests of certain races in online marketplaces” by using peer-generated online reviews. Their work has influenced sharing platforms’ strategies to fight discrimination.

The award is given “to the manuscript judged to be most deserving for its contribution to the theory and practice of operations management among all operations papers published in the past 3 years at Management Science.”

Cui earned her PhD in operations management from the Kellogg School of Management, Northwestern University in 2014. In June 2022, she joined Amazon as a Visiting Academic. In that role, she is building and implementing cutting-edge causal inference, machine learning, optimization, and economic models to make supply chain decisions.

Christos Faloutsos won Donald G. Fink Overview Paper Award

Christos Faloutsos, an Amazon Scholar and the Fredkin Professor of Computer Science at Carnegie Mellon University, was part of a team that received the 2023 IEEE Signal Processing Society Donald G. Fink Overview Paper Award by the IEE Signal Processing Society for "Tensor Decomposition for Signal Processing and Machine Learning."

In their 2016 overview paper, Faloutsos and his coauthors — Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, and Evangelos E. Papalexakis — noted that while tensors, which are a higher-dimensional analogue of a matrix, already had “a rich history, stretching over almost a century, and touching upon numerous disciplines” their usage had only then “become ubiquitous in signal and data analytics at the confluence of signal processing, statistics, data mining and machine learning." Their overview aimed “to provide a good starting point for researchers and practitioners interested in learning about and working with tensors.”

The IEEE Signal Processing Society Overview Paper Award honors the authors “of a journal article of broad interest that has had substantial impact over several years on a subject related to the Society’s technical scope.”

Faloutsos said he believes the paper’s impact can be attributed to the fact that tensors are powerful tools. “They can handle static graphs, time evolving graphs, knowledge graphs which consist of triplets such as subject, verb, object, e.g., who plays in what team, who lives in, what city, who is friends with whom.”

Faloutsos, who joined Amazon as a Scholar in 2018, researches large-scale data mining with emphasis on graphs and time sequences, anomaly detection, tensors, and fractals.

Nicholas Kullman won 2023 Transportation Science Journal Paper of the Year

Nicholas Kullman, a senior research scientist with Amazon Line Haul, won the 2023 Transportation Science Journal Paper of the Year. Kullman and his coauthors — Martin Cousineau, Justin C. Goodson, and Jorge E. Mendoza — were awarded for their 2021 paper, “Dynamic Ride-Hailing with Electric Vehicles”.

In the paper, the authors “consider the problem of an operator controlling a fleet of electric vehicles for use in a ride-hailing service. The operator, seeking to maximize profit, must assign vehicles to requests as they arise as well as recharge and reposition vehicles in anticipation of future requests.”

“As autonomous vehicles become more common, fleets of taxis may become more centrally coordinated,” Kullman explained. “We wanted to consider this case where there's a central authority that controls whether or not requests are accepted or rejected.

“We wanted to look at good policies for figuring out which vehicles should serve which requests and what do you do with your vehicles when they're not serving requests so that they are better positioned to be able to serve future requests — a sort of dynamic stochastic vehicle routing problem.”

The team utilized deep reinforcement learning to develop new policies. Those policies were compared “against some more classical operations research approaches” and “and against dual bounds on the value of an optimal policy.”

“I think one of the other reasons why the paper was well received was that we had dual bounds,” Kullman explained. “We built out a benchmark where we knew we could not have done better than that standard. Basically, if you're the taxi authority and you know exactly where and when these requests are going to pop up, what would you do?”

The team found its “best policy trained with deep reinforcement learning outperforms the reoptimization approach.” Kullman, who joined Amazon in 2021, earned a PhD in operations research from Université de Tours. At Amazon, he researches optimization of middle-mile linehaul operations.

Niklas Karlsson named IEEE Fellow

Niklas Karlsson, a senior principal research scientist in Amazon Advertising Engineering, was recently named an IEEE Fellow for “technical leadership to vSLAM and online advertising.” The designation took effect on Jan. 1. Karlsson leads a team within Amazon DSP (ADSP) engineering, where he oversees research pertaining to ADSP bidding and optimization.

Karlsson earned a master’s in engineering physics from Lund University and then earned both a master’s in statistics and applied probability and a PhD in control, dynamic systems, and robotics, from UC Santa Barbara. After graduating he joined Evolution Robotics as senior navigation and control engineer. While there, he and his colleagues developed and patented vSLAM (visual simultaneous localization and mapping), an odometry- and vision-based SLAM system.

In 2005, Karlsson transitioned to a role as principal control engineer with Advertising.com. There he leveraged his expertise in feedback control and systems engineering to develop a next generation of scalable and adaptive bidding solutions for ad campaign optimization. By way of acquisitions and mergers, he ended up with Yahoo, where, after 17 years in online advertising, he departed as the chief scientist and vice president of research and development for Yahoo’s Demand Side Platform.

The IEEE Fellow designation is conferred by the IEEE board of directors upon individuals with outstanding records of accomplishment in any of the IEEE fields of interest. The total number selected in any one year cannot exceed 0.1% of the total voting membership. IEEE Fellow is the highest grade of membership and is recognized by the technical community as a prestigious honor and an important career achievement.

Joan Feigenbaum named IEEE Fellow

Joan Feigenbaum, an Amazon Scholar and the Grace Murray Hopper professor of computer science at Yale University, will be elevated to IEEE Fellow grade in 2024. The grade of IEEE Fellow “recognizes exceptional distinction in the engineering profession.”

Feigenbaum, who works in the AWS Cryptographic Algorithms group on privacy-preserving computation, was awarded “for contributions to trust-management systems and Internet algorithmics.”

Hugo Krawczyk named IACR Distinguished speaker

Hugo Krawczyk, senior principal scientist, Amazon Web Services, was selected to present the 2023 IACR Distinguished Lecture.

The International Association for Cryptologic Research (IACR) Distinguished Lectures are awarded “to people who have made important contributions to cryptology research.”

Krawczyk, who is also an IACR Fellow, has made fundamental contributions to the cryptographic design of Internet standards like IPsec, IKE, and TLS. He also co-invented numerous cryptographic algorithms including the HMAC message authentication algorithm.

Prior to joining Amazon in July 2023, he was a principal researcher at the Algorand Foundation and part of its founding team. Prior to that, he was an IBM Fellow and Distinguished Research Staff Member at the IBM T.J. Watson Research Center as a member of the Cryptography Research group from 1992 to 1997, and again from 2004 to 2019. He was an associate professor at the Department of Electrical Engineering at the Technion in Israel from 1997 until 2004.

Aaditya Ramdas won Peter Gavin Hall IMS Early Career Prize

Aaditya Ramdas, an Amazon Visiting Academic who is also an assistant professor of statistics and machine learning at Carnegie Mellon University (CMU), won the Peter Gavin Hall Institute of Mathematical Statistics (IMS) Early Career Prize. Ramdas was recognized “for significant contributions in the areas of reproducibility in science and technology; active, sequential decision-making; and assumption-light uncertainty quantification.”

The prize “recognizes one researcher annually who is within the first eight years of completing their doctoral degree.” Ramdas has a bacehlor’s degree in computer science and engineering from IIT-Bombay and earned both a master’s and a PhD in statistics and machine learning from CMU.

Ramdas researches selective and simultaneous inference, game-theoretic statistics, and black-box predictive inference. His areas of applied interest include neuroscience, genetics and auditing.

Aaron Roth named CyLab's 2023 Distinguished Alumni Award winner

Aaron Roth, an Amazon Scholar who is the Henry Salvatori Professor of Computer and Cognitive Science at the University of Pennsylvania, was named Distinguished Alumni Award winner by CyLab, Carnegie Mellon University's security and privacy research institute. The award recognizes “Roth's excellence in algorithms and machine learning, leadership in the field, and commitment to his students.”

Roth, who joined Amazon as a Scholar in 2020, researches the algorithmic foundations of data privacy, algorithmic fairness, game theory, learning theory, and machine learning.

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.