Geopipe uses AI to create a digital twin of Earth

With help from the Alexa Fund, the company is making it easier to virtually reconstruct reality.

Planet Earth is getting a digital twin.

A pair of friends who met during high school in an online forum are now using their PhDs in computer science to pioneer artificial intelligence (AI) techniques that will allow them to create an exact digital replica of the world — one that adds deep and rich layers of detail and nuance to the traditional online mapping experience.

Geopipe's New York City flythrough

This digital twin will allow people to play video games in real-world settings, safely simulate self-driving car technology on virtual streets, and visualize architectural plans for new buildings.

“As an AI company, we teach computers to parse out and understand every detail of what exists in the real world, and turn it into rich digital environments,” said Christopher Mitchell, co-founder and chief technology officer of Geopipe.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

To date, Geopipe has released digital twins — 3D models of a space — of New York City, Boston, San Francisco, and a few other cities. The company is focusing on a limited set of cities as it refines its AI models to create high-resolution digital replicas. From there, the company plans to create digital twins of all the world’s major cities and then everywhere in between — from small towns and mountains to the world’s beaches, forests, and deserts.

Today, the most common approach to create digital twins of cities and landscapes is photogrammetry, which extracts three-dimensional information about objects, structures, and terrain from photographs and other imagery. Well-known online virtual globes that allow users to find their neighborhoods and other points of interest are typically made with this approach.

A digitally rendered version of the New York City skyline is seen in this screenshot from Geopipe
Geopipe draws on datasets with a range of sensor data including photos taken from the ground and air, maps, and laser scans to train AI models. The models identify what’s what in the world and then learn how to digitally re-create them.
Geopipe

While these tools are popular, their shortcomings become clear when people zoom in for close-up views, noted Mitchell. “Trees are these weird green melted blobs. Sometimes the walls of houses melt into the ground. If there are shadows, they are baked in. You can never change the season or time of day. There’s no intelligence or metadata of what’s actually in the world, and as a result you could never walk around at human scale in this world and say, ‘Oh yeah, this is believable,’” he said.

Geopipe’s mission is to address those shortcomings. Dozens of games built by indie developers during two recent Geopipe-sponsored hackathons or “game jams” illustrate the potential of their approach. Developers used Geopipe digital twins to rapidly build games set in New York City over a variety of genres, from fast-paced racing games to more relaxed “cozy games”. Other early adopters of the technology come from the simulation, defense, architecture, engineering, and construction fields.

Related content
Learn how the F1 engineering team collaborated with AWS to develop new design specifications to help make races more competitive.

“When you’re designing a new thing, it’s really helpful to be able to show what it looks like in the context of the existing surroundings,” said Thomas Dickerson, co-founder and chief science officer of Geopipe. To do this, users download a copy of the respective area, digitally delete the existing building, and insert renderings of the replacements.

Geopipe aims to license digital twins to video game developers, simulation builders, municipalities, architectural firms, and anyone else who wants access to a slice of the virtual Earth.

“We really see ourselves disrupting across multiple industry segments,” noted chief executive officer Ben Jones. “If you think about any one city or the planet overall as a digital asset that can be used in various workflows, whether it’s a game or simulation, once we generate that asset, it can be licensed over and over again.”

Gaming roots

Mitchell, who grew up in New York City, and Dickerson, who grew up in rural Vermont, became fast friends when they met in an online forum dedicated to hacking graphing calculators to play classic arcade games and access the internet. They also shared a parallel passion for hobby game development.

See Geopipe's rendering of Washington, D.C.

Their interest in digital twin technology grew from graduate school side projects. Mitchell, who earned a PhD in computer science at New York University, tried to build a 1:1 copy of New York City in Minecraft. Dickerson, who earned his computer science PhD at Brown University in Providence, RI, tried to simplify models of real-world landmarks into virtual LEGO architecture sets.

To succeed, they both needed robust 3D models.

“We quickly found that there was no way we could get digital twins,” Mitchell said. “We certainly didn’t have the time to build them by hand, which is how most people do it today for doing applications like video game development — they have to manually place every tree, every building, every road, and every lamppost. So we started looking at how we could teach computers to understand the world and do it for us.”

Teaching computers to understand the world

Geopipe draws on partners’ datasets with a range of sensor data — including photos taken from the ground and air, maps, and laser scans — to train AI models. The models identify what’s what in the world — evergreen trees, sidewalks, brick buildings, double-hung windows — and then learn the recipes, or instructions, for how to digitally re-create them.

Related content
The company’s work, supported by the Amazon Alexa Fund, has relevant applications for areas from perfumes to disease detection.

The process is called inverse procedural modeling, akin to the opposite of following the step-by-step instructions to build a house out of LEGO bricks, Dickerson explained. In this case, the house is already built; the AI is trained to identify a house as a house, then break it down into individual bricks and write the step-by-step instructions to re-create it.

Once the model is trained, it can be deployed on layers of sensor data from an unknown neighborhood or city block, then identify what’s in the world and follow the recipes to generate a digital twin. When the model encounters data about objects that are unknown to it, the scientists add this data to the training dataset and improve the model.

A digitally rendered version of a New York City street is seen in this screenshot from Geopipe
Geopipe says its digital twins, such as this one from New York City, will allow people to play video games in real-world settings and visualize architectural plans for new buildings.
Geopipe

“We pay a lot of the costs upfront when we do the learning process, and then we can solve each individual instance much more quickly at runtime,” Dickerson said.

An advantage to Geopipe’s approach, noted Mitchell, is the ability to take updated data from even a single source, such as a new aerial photo, and generate new copies of the world with changes such as a new building that went up downtown or a new road out in the suburbs.

What’s more, Mitchell added, the recipes are designed to make the digital twins interactive.

“You can open the doors, look out of the windows, and light up the street lights. If it rains, the bricks will look a certain way. If you want to make it post-apocalyptic, you might put vines on the outside or destroy the top third of the building,” he said. “You can then easily populate these environments with cars, people, and fine details.”

Computationally heavy

Creating digital twins with AI is computationally heavy, and, to that end, Geopipe deploys its geographic pipeline on Amazon Web Services (AWS). Mitchell and Dickerson both studied distributed computing systems in graduate school and have applied that approach to Geopipe’s workload, parallelizing it across multiple servers to process the world rapidly and accurately.

Related content
Learn about the science behind the brand-new NHL EDGE IQ stat that debuted in April 2023.

“By scaling up the number of servers we use to process the world, we can update it really quickly,” Mitchell said. “So not only can we create areas that were just too slow or too expensive to build digital models of before, we can now also keep them up to date at a fast cadence using tools like AWS.”

The team thinks creating a digital twin of the whole Earth will require a handful of years. By the end of 2023, they hope to have a dozen cities and then expand from there.

Constantly updated digital twins, noted Jones, the Geopipe CEO, should have commercial appeal.

“Ultimately, you’ll have this living asset that’s constantly updating,” Jones said. “That’s the ideal world, and we’re going to get there as the data continues to improve, the graphics continue to improve, and the AI continues to improve.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
LU, Luxembourg
Have you ever wondered how Amazon delivers timely and reliably hundreds of millions of packages to customer’s doorsteps? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! Amazon Transportation Services is seeking Applied (or Research) Scientists. As a key member of the central Research Science Team of ATS operations, these persons will be responsible for designing algorithmic solutions based on data and mathematics for optimizing the middle-mile Amazon transportation network. The job is opened in the EU Headquarters in Luxembourg (alternatively: Barcelona, Berlin or London), designed to maximize interaction with the team and stakeholders, but we will consider applicants with remote work requirements as well. Key job responsibilities Solve complex optimization and machine learning problems using scalable algorithmic techniques. Design and develop efficient research prototypes that address real-world problems in the middle-mile operations of Amazon. Lead complex time-bound, long-term as well as ad-hoc analyses to assist decision making. Communicate to leadership results from business analysis, strategies and tactics. A day in the life You will be brainstorming algorithmic approaches with team-mates to solve challenging problems for the middle-mile operations of Amazon. You will be developing and testing prototype solutions with above algorithmic techniques. You will be scavenging information from the sea of Amazon data to improve these solutions. You will be meeting with other scientists, engineers, stakeholders and customers to enhance the solutions and get them adopted. About the team The Science and Tech team of ATS EU is looking for candidates who are looking to impact the world with their mathematical and data-driven skills. ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We code our prototypes to be production-ready We prefer provably optimal solutions than heuristics, though we settle for heuristics when performance dictates it. Overall, we appreciate the value of correct modeling. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as a Research Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As a Research Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The economics team within Recruiting Engine uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which uses a range of approaches to develop and deliver solutions that measurably achieve this goal. We are looking for an Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. She/He/They will produce robust, objective research results and insights which can be communicated to a broad audience inside and outside of Amazon. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. She/He/They will work well in a team setting with individuals from diverse disciplines and backgrounds. She/He/They will serve as an ambassador for science and a scientific resource for business teams. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating the model. They will be customer-centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Bellevue
We’re seeking a thought leader to direct Generative AI and machine learning initiatives aimed at scaling the $600B+ Amazon ecommerce business. This person will also be a deep learning practitioner/thinker and guide the research in these areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual use cases through the use of Generative AI. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. About the team The Applied AI team uses advanced ML and Generative AI techniques to help scale the inputs for our large e-commerce business. Scaling in the past was limited by roles that could be done manually, in a timely manner. This is a new focus for our business, and the opportunity is huge! We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA