Geopipe uses AI to create a digital twin of Earth

With help from the Alexa Fund, the company is making it easier to virtually reconstruct reality.

Planet Earth is getting a digital twin.

A pair of friends who met during high school in an online forum are now using their PhDs in computer science to pioneer artificial intelligence (AI) techniques that will allow them to create an exact digital replica of the world — one that adds deep and rich layers of detail and nuance to the traditional online mapping experience.

Geopipe's New York City flythrough

This digital twin will allow people to play video games in real-world settings, safely simulate self-driving car technology on virtual streets, and visualize architectural plans for new buildings.

“As an AI company, we teach computers to parse out and understand every detail of what exists in the real world, and turn it into rich digital environments,” said Christopher Mitchell, co-founder and chief technology officer of Geopipe.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

To date, Geopipe has released digital twins — 3D models of a space — of New York City, Boston, San Francisco, and a few other cities. The company is focusing on a limited set of cities as it refines its AI models to create high-resolution digital replicas. From there, the company plans to create digital twins of all the world’s major cities and then everywhere in between — from small towns and mountains to the world’s beaches, forests, and deserts.

Today, the most common approach to create digital twins of cities and landscapes is photogrammetry, which extracts three-dimensional information about objects, structures, and terrain from photographs and other imagery. Well-known online virtual globes that allow users to find their neighborhoods and other points of interest are typically made with this approach.

A digitally rendered version of the New York City skyline is seen in this screenshot from Geopipe
Geopipe draws on datasets with a range of sensor data including photos taken from the ground and air, maps, and laser scans to train AI models. The models identify what’s what in the world and then learn how to digitally re-create them.
Geopipe

While these tools are popular, their shortcomings become clear when people zoom in for close-up views, noted Mitchell. “Trees are these weird green melted blobs. Sometimes the walls of houses melt into the ground. If there are shadows, they are baked in. You can never change the season or time of day. There’s no intelligence or metadata of what’s actually in the world, and as a result you could never walk around at human scale in this world and say, ‘Oh yeah, this is believable,’” he said.

Geopipe’s mission is to address those shortcomings. Dozens of games built by indie developers during two recent Geopipe-sponsored hackathons or “game jams” illustrate the potential of their approach. Developers used Geopipe digital twins to rapidly build games set in New York City over a variety of genres, from fast-paced racing games to more relaxed “cozy games”. Other early adopters of the technology come from the simulation, defense, architecture, engineering, and construction fields.

Related content
Learn how the F1 engineering team collaborated with AWS to develop new design specifications to help make races more competitive.

“When you’re designing a new thing, it’s really helpful to be able to show what it looks like in the context of the existing surroundings,” said Thomas Dickerson, co-founder and chief science officer of Geopipe. To do this, users download a copy of the respective area, digitally delete the existing building, and insert renderings of the replacements.

Geopipe aims to license digital twins to video game developers, simulation builders, municipalities, architectural firms, and anyone else who wants access to a slice of the virtual Earth.

“We really see ourselves disrupting across multiple industry segments,” noted chief executive officer Ben Jones. “If you think about any one city or the planet overall as a digital asset that can be used in various workflows, whether it’s a game or simulation, once we generate that asset, it can be licensed over and over again.”

Gaming roots

Mitchell, who grew up in New York City, and Dickerson, who grew up in rural Vermont, became fast friends when they met in an online forum dedicated to hacking graphing calculators to play classic arcade games and access the internet. They also shared a parallel passion for hobby game development.

See Geopipe's rendering of Washington, D.C.

Their interest in digital twin technology grew from graduate school side projects. Mitchell, who earned a PhD in computer science at New York University, tried to build a 1:1 copy of New York City in Minecraft. Dickerson, who earned his computer science PhD at Brown University in Providence, RI, tried to simplify models of real-world landmarks into virtual LEGO architecture sets.

To succeed, they both needed robust 3D models.

“We quickly found that there was no way we could get digital twins,” Mitchell said. “We certainly didn’t have the time to build them by hand, which is how most people do it today for doing applications like video game development — they have to manually place every tree, every building, every road, and every lamppost. So we started looking at how we could teach computers to understand the world and do it for us.”

Teaching computers to understand the world

Geopipe draws on partners’ datasets with a range of sensor data — including photos taken from the ground and air, maps, and laser scans — to train AI models. The models identify what’s what in the world — evergreen trees, sidewalks, brick buildings, double-hung windows — and then learn the recipes, or instructions, for how to digitally re-create them.

Related content
The company’s work, supported by the Amazon Alexa Fund, has relevant applications for areas from perfumes to disease detection.

The process is called inverse procedural modeling, akin to the opposite of following the step-by-step instructions to build a house out of LEGO bricks, Dickerson explained. In this case, the house is already built; the AI is trained to identify a house as a house, then break it down into individual bricks and write the step-by-step instructions to re-create it.

Once the model is trained, it can be deployed on layers of sensor data from an unknown neighborhood or city block, then identify what’s in the world and follow the recipes to generate a digital twin. When the model encounters data about objects that are unknown to it, the scientists add this data to the training dataset and improve the model.

A digitally rendered version of a New York City street is seen in this screenshot from Geopipe
Geopipe says its digital twins, such as this one from New York City, will allow people to play video games in real-world settings and visualize architectural plans for new buildings.
Geopipe

“We pay a lot of the costs upfront when we do the learning process, and then we can solve each individual instance much more quickly at runtime,” Dickerson said.

An advantage to Geopipe’s approach, noted Mitchell, is the ability to take updated data from even a single source, such as a new aerial photo, and generate new copies of the world with changes such as a new building that went up downtown or a new road out in the suburbs.

What’s more, Mitchell added, the recipes are designed to make the digital twins interactive.

“You can open the doors, look out of the windows, and light up the street lights. If it rains, the bricks will look a certain way. If you want to make it post-apocalyptic, you might put vines on the outside or destroy the top third of the building,” he said. “You can then easily populate these environments with cars, people, and fine details.”

Computationally heavy

Creating digital twins with AI is computationally heavy, and, to that end, Geopipe deploys its geographic pipeline on Amazon Web Services (AWS). Mitchell and Dickerson both studied distributed computing systems in graduate school and have applied that approach to Geopipe’s workload, parallelizing it across multiple servers to process the world rapidly and accurately.

Related content
Learn about the science behind the brand-new NHL EDGE IQ stat that debuted in April 2023.

“By scaling up the number of servers we use to process the world, we can update it really quickly,” Mitchell said. “So not only can we create areas that were just too slow or too expensive to build digital models of before, we can now also keep them up to date at a fast cadence using tools like AWS.”

The team thinks creating a digital twin of the whole Earth will require a handful of years. By the end of 2023, they hope to have a dozen cities and then expand from there.

Constantly updated digital twins, noted Jones, the Geopipe CEO, should have commercial appeal.

“Ultimately, you’ll have this living asset that’s constantly updating,” Jones said. “That’s the ideal world, and we’re going to get there as the data continues to improve, the graphics continue to improve, and the AI continues to improve.”

Research areas

Related content

ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, NY, New York
Amazon Advertising exists at the intersection of marketing and e-commerce and offers advertisers a rich array of innovative advertising solutions across Amazon-owned and third party properties. We believe that advertising, when done well, can greatly enhance the value of the customer experience and generate a positive return on investment for our advertising partners. We are currently looking for a highly skilled and motivated Data Scientist to help scale our growing advertising business. The Data Scientist is a key member of the Global Marketing Insights team at Amazon Ads, working with marketing, product, retail and other Amazon business partners to analyze and improve advertisers’ performance on Amazon, in support of their marketing objectives. You will work with Amazon's unique data and translate it into high-quality and actionable insights and recommendations to improve the effectiveness of advertiser campaigns and unlock business opportunities. Day to day activities include analyzing advertiser behaviors to develop data-driven insights on what tactics and strategies lead to success. You will also build automated solutions to generate science driven insights at scale, that are distributed to our advertisers across channels. Basic qualifications - Bachelor's or Master's degree in Engineering, Statistics, Economics, or a related technical field - Proven experience in data analytics or data science roles - Proficiency with SQL and Python - Strong understanding of basic statistical techniques and methodologies such as distributions, hypothesis testing, regressions, experimentation, A/B Testing etc. - Excellent organizational, interpersonal, and communication skills (both written and verbal) - Ability to work cross-functionally and with technical and non-technical stakeholders Preferred qualifications - Understanding of advanced statistical techniques and methodologies such as causal inference, propensity score matching, machine learning etc. - Experience with developing and deploying production machine learning models, especially on cloud platforms - Experience building and managing data pipelines - Experience with digital advertising products, performance analytics , marketing and advertising campaigns - MBA, Master’s, or Doctoral degree in Economics, Engineering, Marketing, Statistics, Advertising, or related fields - Publication track record/writing experience (ex. published a paper in a technical journal or trade publication) About the team The Marketing Insights team is responsible for delivering science backed insights to millions of advertisers via our marketing messages. Our team is distributed across the globe and is building cutting edge data science to identify and communicate the impact of various advertising strategies for our products. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solutions About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA
US, WA, Bellevue
Amazon.com Services, Inc. is looking for a motivated individual with strong analytical skills and practical experience to join our Modeling and Optimization team. We are hiring specialists into our scientific team with expertise in network and combinatorial optimization, simulation-based design, and/or control theory. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of analytical strategic models and automation tools fed by massive amounts of data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in North America, Europe, and Japan, China, and India as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. The ideal candidate will have good communication skills with both technical and business people with ability to speak at a level appropriate for the audience. Key job responsibilities * Understand ambiguous business problems, model it in the simplest and most effective manner with limited guidance. * Use new or existing tools to support internal partner-teams and provide the best, science-based guidance. * Contribute to existing tools with highly disciplined coding practices. * Contribute to the growth of knowledge of our team and the scientific community with internal and external publications or presentations. About the team * At the Modeling and Optimization (MOP) team, we use optimization, algorithm design, statistics, and machine learning to improve decision-making capabilities across WW Operations and Amazon Logistics. * We focus on transportation topology, labor and resource planning, routing science, visualization research, data science and development, and process optimization. * We create models to simulate, optimize, and control the fulfillment network with the objective of reducing cost while improving speed and reliability. * We support multiple business line, therefore maintain a comprehensive and objective view, coordinating solutions across organizational lines where possible. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA