Can you teach a computer to smell? Osmo is trying

The company’s work, supported by the Amazon Alexa Fund, has relevant applications for areas from perfumes to disease detection.

At the age of 12, Alex Wiltschko bought his first perfume, Azzaro pour Homme. He’d read about it in his favorite book — Perfumes: The Guide, by Luca Turin — and was thrilled to find it at a knock-down price at his local TJ Maxx. It would be the first in a large collection.

For as long as he can remember, Wiltschko has been obsessed by scent. “It’s how I’m wired,” he says. His other obsession? Computers. “An interest in perfumes and computers was not the recipe for social success as an adolescent,” he adds.

It was, however, the recipe for a life trajectory that took Wiltschko deep into the neuroscience of olfaction and cutting-edge machine learning. This combination has placed Wiltschko at the forefront of the nascent science of digital olfaction — a.k.a. giving computers a sense of smell.

Wiltschko is now the CEO of Osmo, a Google Research spinout based in Cambridge, Massachusetts. In September 2022, the company hit the ground running with $60 million in initial funding, including an investment from the Amazon Alexa Fund.

In the short term, Osmo aims to unlock a new era of commercial fragrance innovation. Longer term, the company envisions its technologies having the potential to save lives through the development of better insect repellents and even digital diagnostic tools for detecting serious illnesses on a person's breath.

The Principal Odor Map

The keystone to all this is the team’s breakthrough advance: the creation of what it calls the Principal Odor Map (POM).

Before vision could be digitized, a map called RGB was required: It shows how every color is made up of varying proportions of red, green, and blue. Before Osmo was spun out, Wiltschko’s team did something similar — and remarkable — with odor. They used machine learning to map the structure of a molecule directly to how humans perceive the smell of that molecule. In other words, they built a model that can tell you what a molecule smells like just by looking at it. This is the POM.

That was an ‘a-ha!’ moment for us, akin to passing a Turing test for odor. We'd built something with real commercial value that was sufficiently validated to bring into the world.
Jon Hennek

Here’s how they created POM and, crucially, how they proved it worked. They first trained a graph neural network (GNN) on about 5,000 molecules from several flavor and fragrance databases. The smells of all these molecules were well-documented with multiple human-judged odor labels such as beefy, floral, or minty. From this, the model was able to learn connections between molecular structure and odor, without needing any knowledge of what actually happens in the nose or brain of a person sniffing an odor.

That’s great, as far as it goes. The crucial question then was, could POM generalize to predict the smell of molecules it had never seen before, based solely on their molecular structure? And could it do that as well as trained human raters, which is the gold standard for odor characterization? To find out, the team took a diverse set of more than 400 odor molecules previously unseen by POM and had the model blindly predict their characteristics. Then a panel of trained human raters sniffed and labeled those same odors.

When the Osmo team compared the results, they were delighted. Not only had the model successfully predicted the odor of these unseen molecules as well as trained humans, but its predicted odor profiles were closer to the average results of the panel than any of the individual panelists themselves.

“That was an ‘a-ha!’ moment for us, akin to passing a Turing test for odor,” says Jon Hennek, chief product officer at Osmo. “We'd built something with real commercial value that was sufficiently validated to bring into the world.”

Islands of odor

POM is not a map in the typical sense, but it can nevertheless be compared to the RGB map. Pick two points at random on a two-dimensional color map. The closer those two points are to each other, the more similar the color. The same is true for odors in POM, though this map exists in a mind-bending 256 dimensions. All of the tulip-smelling molecules are close to each other, for example. Ditto for the brandy-smelling molecules.

“Zooming out a little, all the flowers are next to each other. There's a whole floral Pangaea in this odor map! We didn't tell it to do that,” says Wiltschko. This sort of grouping is also true for woods, bakery-type smells, alcoholic smells, you name it. Our brain seems to organize smells in nested hierarchies, says Wiltschko, so the rose odor is inside the rose category, inside the flowers category, inside the plants category, inside the pleasant category.

“The fact that we were able to observe this in the POM without telling it is astounding,” he says.

On the left is a color map (the CIE 1931 color space chromaticity diagram), similar colors lie near each other. On the right is Osmo’s Principal Odor Map, individual molecules (grey points) are found nearer to each other if they are predicted to smell similar.
In this color map (the CIE 1931 color space chromaticity diagram), similar colors lie near each other. Likewise, in Osmo’s Principal Odor Map, individual molecules (grey points) are found nearer to each other if they are predicted to smell similar.
Courtesy of Osmo

While Wiltschko has bold ideas for the future of Osmo’s technology, the first order of business is putting the company on a solid commercial footing. For now, Osmo is concentrating on developing new ingredients for the global fragrance category.

The Osmo team is using POM to explore the world of odor molecules — several billion of them — and homing in on molecules that POM predicts to have an interesting and strong olfactory character.

“We're much better at that, I believe, than anybody else in the world,” says Hennek. “Because rather than start with rules of thumb and chemical intuition, we are starting with an odor prediction for every molecule we could possibly synthesize. It lets us find molecules that a chemist might never have considered.”

The team is working with advisors, including Christophe Laudamiel, a French master perfumer, and potential customers include fragrance houses and packaged goods companies.

More from Alexa Fund
Alexa Fund company’s assisted reality tech could unlock speech for hundreds of millions of people who struggle to communicate.

“We've had repeated feedback that our ingredients have the potential to be very successful, commercially,” says Wiltschko. “That smells like product/market fit.” The principal idea is to license those molecules to fragrance houses.

It’s a timely endeavor. The global fragrance category is valued at more than $10 billion and growing steadily. But some traditional ingredients, such as sandalwood oils, can result in over-harvesting or other ecological harm, while the characteristics of other ingredients increasingly fall short as the demand grows for safer, more biodegradable products.

With POM, Osmo is paving the way for palettes of safe, synthetic fragrances that recreate natural odors using environmentally friendly and easily synthesized molecules. To that end Osmo is looking at combinations of just a handful of atoms: carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur.

“Then we bring them into our lab for a process akin to a drug discovery pipeline,” says Hennek. “We are working towards regulatory approval of those molecules.”

Rise of the graph neural networks

All of this has only become possible in the last six years or so. The core insight that started this scientific project, says Wiltschko, was that machine learning was “getting really good at molecules,” thanks to the recent rise of GNNs.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

Previously, machine learning approaches primarily converted inputs — images or data arrays, say — into rectangles or data grids to process them. Molecules didn’t fit this mold: a molecule might be two atoms, or it might be 20 atoms, with wildly different structure and connectivity. They are simply not reducible to rectangles or grids.

Instead, the atoms in a molecule can be considered as nodes, and the chemical bonds between them as edges, forming a graph structure. This representation allows GNNs to model and process molecular data.

“Some of this technology was developed by friends of mine at Google. So, it was a fantastic, fertile ground to start exploring this idea,” says Wiltschko.

This ongoing exploration is creating some exciting possibilities. Wiltschko reasoned that, just as the sun has shone on Earth since before life began, resulting in many creatures evolving similar visual apparatuses, the composition of the Earth’s atmosphere has been broadly stable over evolutionary time. So could POM also be used to understand the olfactory responses of other species, even those separated from humans by millions of years of evolution?

Life-saving potential

Take mosquitos. Could POM be used to work out what odors repel these disease-carrying insects?

To find out, they augmented POM with additional data sources. The first was a long-forgotten U.S. government report, published in the 1940s, that featured the results of testing 19,000 compounds for their mosquito repellency. The second was information provided by TropIQ, a Dutch company that develops malaria-control technology. The augmented model was soon able to predict entirely new molecules with repellency at least as powerful as DEET, the active ingredient in the most effective mosquito repellents.

osmo image 2.png
Osmo digitized mosquito-repellency data for 19,000 compounds reported on by the United States Department of Agriculture and used that to refine its model (left). The team then predicted candidate molecules that would be most repellent to mosquitos, produced the most viable options, tested them on real mosquitos, and fed those results back into the model to further refine it.
Courtesy of Osmo

The development of cheaper, more effective, and safer insect repellents could have a huge impact on global health. Wiltschko has nothing to announce yet, but says this research is ongoing in collaboration with the Bill & Melinda Gates Foundation.

Applying POM to mosquitos is also a proof of concept, says Hennek. “We can picture applying our product not just to what mosquitoes don’t like, but to what roaches don’t like. Or any number of agricultural pests.”

Capturing smell forever

Looking further down the road, Wiltschko’s vision is to digitize our sense of smell. The idea is not as far-fetched as it sounds. Consider several hundred years ago. The idea that a visual moment — the fleeting expression on your child’s face or an orchard of apple trees in blossom — could be instantly captured and made available forever more in perfect color would have been nothing short of magical thinking.

By the 1820s came the first photography, and with it, the first steps towards human mastery of the world of light. Today, it feels like a fundamental right to freeze those visual memories and hold on to them forever. And the same goes for the auditory world.

“We know what’s required to digitize a human sense,” says Wiltschko. “And we don't have to wait for any of the inventions that vision did — particularly integrated circuits.”

Indeed, with modern computing power and the harnessing of machine learning, Wiltschko reckons computers will have a “sense of smell” within a decade or two. Three stages are required: “reading” smell, understanding it, and “writing” it. Osmo wants to understand, and ultimately curate a wide palette of safe, synthetic molecules that can recreate the entire human smellscape. The reading (sensing) of odorous molecules currently requires bulky and expensive lab equipment, such as a gas chromatography mass spectrometer, while the writing (producing) of smells on demand remains science fiction at the consumer level, says Wiltschko, for now.

A window to the inside

Sensing and understanding odor at a high level may be sufficient to herald powerful health applications, says Wiltschko. For example, it is well established that serious illnesses, including some cancers, can be detected through their effect on your breath. Being able to take a snapshot of that odor profile — an “Osmograph”, in Wiltschko’s words – could reveal a great deal about what’s going on inside our bodies.

“We don't know if that technology will ultimately have a transformative effect on healthcare, but I am betting that it will,” he says.

Related content
ARA recipient Marinka Zitnik is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies.

It’s very important to Wiltschko that, down the line, Osmo grows to develop clinical diagnostics applications. “That's the North Star for me, and it's very important that we get there. But the sheer cost and the talent that's required is rare and expensive,” he says. “So, it can’t be the first beach that we storm.”

As Osmo grows, it will be looking for similarly passionate people to push the mission forward. “We've been finding that there are people out there who are secret scent lovers, who secretly aspire to work in the field of machine olfaction,” says Wiltschko. “Just to put it out there: there's one place to do this, and it's Osmo.”

Talking to Wiltschko and those inspired to work alongside him, it is clear to see that Osmo is the culmination of his lifelong passions. For him, it’s emotional. “Once you smell a thing, you cannot stop the feelings that you get from it. There's a very fundamental feeling and emotional component,” he says, “and I think that’s beautiful.”

Research areas

Related content

RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Data Scientist you will investigate business problems using data, invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include named entity recognition, product substitutes, pricing optimization, agentic AI, and large language models. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Perform data analysis and build data pipelines to drive business decisions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services