Cognixion’s assisted reality headset
Cognixion’s assisted reality architecture aims to overcome speech barriers by integrating a brain-computer interface with machine learning algorithms, assistive technology, and augmented reality (AR) applications in a wearable format.
Cognixion

Cognixion gives voice to a user’s thoughts

Alexa Fund company’s assisted reality tech could unlock speech for hundreds of millions of people who struggle to communicate.

(Editor’s note: This article is the latest installment in a series by Amazon Science delving into the science behind products and services of companies in which Amazon has invested. The Alexa Fund participated in Cognixion’s $12M seed round in November 2021.)

In 2012, Andreas Forsland, founder and CEO of Alexa Fund company Cognixion, became the primary caregiver and communicator for his mother. She was hospitalized with complications from pneumonia and unable to speak for herself.

“That experience opened my eyes to how precious speech really is,” Forsland says. According to a Cognixion analysis of over 1,200 relevant research papers, more than half a billion people worldwide struggle to speak clearly or at conversational speeds, which can hamper their interactions with others and full participation in society.

Forsland wondered whether a technology solution would be feasible and started Cognixion in 2014 to explore that possibility. “We had the gumption to think, ‘Wouldn’t it be neat to have a thought-to-speech interface that just reads your mind?’ We were naïve and curious at the same time.”

Brain–computer interfaces (BCIs) have been around since the 1970s, with demonstrated applications in enabling communication. But their use in the real world has so far been limited, owing to the amount of training required, the difficulty of operating them, performance issues related to recording technology, sensors, and signal processing, and the interaction between the brain and the BCI.

Cognixion’s assisted reality architecture aims to overcome these barriers by integrating a BCI with machine learning algorithms, assistive technology, and augmented reality (AR) applications in a wearable format.

Introducing Cognixion: The world's first "assisted reality" device

The current embodiment of the company’s technology is a non-invasive device called Cognixion ONE. Brainwave patterns associated with visual fixation on interactive objects presented through the headset are detected and decoded. The signals enable hands-free, voice-free control of AR/XR applications to generate speech or send instructions to smart-home components or AI assistants.

“For some people, we make things easy, and for other people, we make things possible. That’s the way we look at it: technology in service of enhancing a human’s ability to do things,” says Forsland.

In an interview with Amazon Science, Forsland described the ins and outs of Cognixion ONE, the next steps in its development, and the longer-term future of assisted reality tech.

  1. Q. 

    Given the wide range of abilities or disabilities that someone might have, how did you go about designing technology that anyone can use?

    A. 

    It all starts with the problem. One of the key constraints in this problem domain is that you can’t make any assumptions about someone’s ability to use their hands or arms or mouth in a meaningful way. So how can you actually drive an interaction with a computer using the limited degrees of freedom that the user has?

    In the extreme case, the user actually has no physical degrees of freedom. The only remaining degree of freedom is attention. So can you use attention as a mechanism to drive interaction with a computer, fully bypassing the rest of the body?

    It turns out that you can, thanks to neuroscience work in this area. You can project certain types of visual stimuli onto a user’s retina and look for their attentional reaction to those stimuli.

    Related content
    Alexa Fund portfolio company’s science-led program could change how we approach mental wellness — and how we use VR.

    If I give you two images with different movement characteristics, I can tell by the pattern of your brain waves that you’re seeing those two things, and the fact that you're paying attention to one of them actually changes that pattern.

    It takes a tiny bit of flow-state thinking. It’s kind of like when you look at an optical illusion, and you can see the two states. If you can do that, then you can decide between two choices, and as soon as you can do that, I can build an entire interface on top of that. I can ask, ‘Do you want A or do you want B?,’ like playing ‘20 Questions.’ It’s sort of the most basic way to differentiate a user’s intent.

    Basically, we considered the hardest possible situation first: a person with no physical capabilities whatsoever. Let’s solve that problem. Then we can start layering stuff on, like gaze tracking, gestures, or keyboards, to further enhance the interaction and make it even more efficient for people with the relevant physical capabilities. But it may turn out that an adaptive keyboard is actually overkill for a lot of interactions. Maybe you can get by with much less.

    Related content
    Alexa Fund company unlocks voice-based computing for people who have trouble using their voices.

    Now, if you marry that input with the massive advancements in the last five or ten years in machine learning, you can become much more aggressive about what you think the person is trying to do, or what is appropriate in that situation. You can use that information to minimize the number of interactions required. Ideally, you get to a place where you have a very efficient interface, because the user only has to decide between the things that are most relevant.

    And you can make it much more elaborate by integrating knowledge about the user’s environment, previous utterances, time of day, etc. That’s really the magic of this architecture: It leverages minimum inputs with really aggressive prediction capability to help people communicate smoothly and efficiently.

  2. Q. 

    What types of communication does this technology enable?

    A. 

    First and foremost is speech. And an easy way to understand the impact of this technology is to look at conversational rate. Right now, this conversation is probably on the order of 60 to 150 words per minute, depending on how much coffee we had and so on.

    For a lot of users of our technology, it’s like a pipe dream to even get to 20 or 30. It can take a long time to produce even very basic utterances, along the lines of ‘I am tired.’

    Now imagine breaking through to say, ‘Let’s talk about our day,’ and carrying on a conversation that provides meaning, interest, and value. That is the breakthrough capability that we’re really trying to enable.

    We have this amazing group — our Brainiac Council — of people with speech disabilities, scientists, technologists. We have more than 200 Brainiacs now, and we want to grow the council to 300.

    Cognixion ONE demo

    One of our Brainiacs uses the headset to help him communicate words that are difficult for him to pronounce, like ‘chocolate.’ He owns and operates a business where he performs for other people. During a performance, he can plug the headset directly into his sound system instead of having to talk into a microphone.

    Think of how many other people have something to say but might be overlooked. We want to help them get their point across.

    One possibility we’re exploring for future enhancement of speech generation is providing each user with their own voice, through technologies like voice banking and text-to-speech software like Amazon Web Services Polly. Personalization to such a degree could make the experience much richer and more meaningful for users.

    But speech generation is only one function of a broad ‘neuroprosthetic.’ People also interact with places, things, and media — and these interactions don’t necessarily require speech. We’re building an Alexa integration to enable home automation control and other enriched experiences. Through the headset, users can interact with their environment, control smart devices, or access news, music, whatever is available.

    In time, a device could allow users to control mobility devices for assisted navigation, robots for household tasks, settings for ambient lighting and temperature. It’s enabling a future where more people can live their daily lives more actively and independently.

  3. Q. 

    What are the next steps toward creating that future?

    A. 

    There are some key technical problems to solve. BCIs historically have been viewed somewhat skeptically, particularly the use of electroencephalography. So our challenge is to come up with a paradigm for stimulus response that enables sufficient expressive capability within the user interface. In other words, can I show you enough different kinds of stimuli to give you meaningful choices so you can efficiently use the system without becoming unnecessarily tired?

    Then it’s like whack-a-mole, or the digital equivalent. When we see a specific frequency come through, and a certain power threshold on it, we act on it. How many different unique frequencies can we disambiguate from one another at any given time?

    A simulated view of the interface in a Cognixion device
    “For some people, we make things easy, and for other people, we make things possible. That’s the way we look at it: technology in service of enhancing a human’s ability to do things,” says Andreas Forsland, founder and CEO of Cognixion.
    Cognixion

    Another challenge is that a commercial device should require a nearly zero learning curve. Once you pop it on, you need to be able use it within minutes and not hours.

    So we might couple the stimulus-response technology with a display, or speakers, or haptics that can give biofeedback to help train your brain: ‘I’m doing this right’ or ‘I’m doing it wrong.’ This would give people the positives and negatives as they interact with it. If you can close those iterations quickly, people learn to use it faster.

    Our goal is to really harden and fortify the reliability and accuracy of what we’re doing, algorithmically. We then have a very robust IP portfolio that could go into mainstream applications, likely in the form of much deeper partnerships.

    Related content
    Amazon Research Award recipient Jonathan Tamir is focusing on deriving better images faster.

    In terms of applications, we are pursuing a medical channel and a research channel. Making a medical device is much more challenging than making a consumer device, for a variety of technical reasons: validation, documentation, regulatory considerations. So it takes some time. But the initial indications for use will be speech generation and environmental control.

    Eventually, we could look to expand our indications within the control ‘bubble’ to cover additional interactions with people, places, things, and content. Plus, the system could find applications within three other healthcare bubbles. One is diagnostics in areas like ophthalmology and neurology, thanks to the sensors and closed-loop nature of the device. A second is therapeutics for conditions involving attention, focus, and memory. And the third is remote monitoring in telehealth-type situations, because of the network capabilities.

    The research side uses the same medical-grade hardware, but loaded with different software to enable biometric analysis and development of experimental AR applications. We’re preparing for production and delivery of initial demand early next year, and we’re actively seeking research partners who would get early access to the device.

    In addition to collaborators in neuroscience, neuroengineering, bionics, human-computer interaction, and clinical and translational research, we’re also soliciting input from user experience research to arrive at a final set of specific technical requirements and use-case requirements.

    We think there’s tremendous opportunity here. And we’re constantly being asked, ‘When can this become mainstream?’ We have some thoughts and ideas about that, of course, but we also want to hear from the research community about the use cases they can dream up.

Research areas

Related content

US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement whole body control methods for balance, locomotion, and dexterous manipulation - Utilize state-of-the-art in methods in learned and model-based control - Create robust and safe behaviors for different terrains and tasks - Implement real-time controllers with stability guarantees - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.