Cognixion’s assisted reality headset
Cognixion’s assisted reality architecture aims to overcome speech barriers by integrating a brain-computer interface with machine learning algorithms, assistive technology, and augmented reality (AR) applications in a wearable format.
Cognixion

Cognixion gives voice to a user’s thoughts

Alexa Fund company’s assisted reality tech could unlock speech for hundreds of millions of people who struggle to communicate.

(Editor’s note: This article is the latest installment in a series by Amazon Science delving into the science behind products and services of companies in which Amazon has invested. The Alexa Fund participated in Cognixion’s $12M seed round in November 2021.)

In 2012, Andreas Forsland, founder and CEO of Alexa Fund company Cognixion, became the primary caregiver and communicator for his mother. She was hospitalized with complications from pneumonia and unable to speak for herself.

“That experience opened my eyes to how precious speech really is,” Forsland says. According to a Cognixion analysis of over 1,200 relevant research papers, more than half a billion people worldwide struggle to speak clearly or at conversational speeds, which can hamper their interactions with others and full participation in society.

Forsland wondered whether a technology solution would be feasible and started Cognixion in 2014 to explore that possibility. “We had the gumption to think, ‘Wouldn’t it be neat to have a thought-to-speech interface that just reads your mind?’ We were naïve and curious at the same time.”

Brain–computer interfaces (BCIs) have been around since the 1970s, with demonstrated applications in enabling communication. But their use in the real world has so far been limited, owing to the amount of training required, the difficulty of operating them, performance issues related to recording technology, sensors, and signal processing, and the interaction between the brain and the BCI.

Cognixion’s assisted reality architecture aims to overcome these barriers by integrating a BCI with machine learning algorithms, assistive technology, and augmented reality (AR) applications in a wearable format.

Introducing Cognixion: The world's first "assisted reality" device

The current embodiment of the company’s technology is a non-invasive device called Cognixion ONE. Brainwave patterns associated with visual fixation on interactive objects presented through the headset are detected and decoded. The signals enable hands-free, voice-free control of AR/XR applications to generate speech or send instructions to smart-home components or AI assistants.

“For some people, we make things easy, and for other people, we make things possible. That’s the way we look at it: technology in service of enhancing a human’s ability to do things,” says Forsland.

In an interview with Amazon Science, Forsland described the ins and outs of Cognixion ONE, the next steps in its development, and the longer-term future of assisted reality tech.

  1. Q. 

    Given the wide range of abilities or disabilities that someone might have, how did you go about designing technology that anyone can use?

    A. 

    It all starts with the problem. One of the key constraints in this problem domain is that you can’t make any assumptions about someone’s ability to use their hands or arms or mouth in a meaningful way. So how can you actually drive an interaction with a computer using the limited degrees of freedom that the user has?

    In the extreme case, the user actually has no physical degrees of freedom. The only remaining degree of freedom is attention. So can you use attention as a mechanism to drive interaction with a computer, fully bypassing the rest of the body?

    It turns out that you can, thanks to neuroscience work in this area. You can project certain types of visual stimuli onto a user’s retina and look for their attentional reaction to those stimuli.

    Related content
    Alexa Fund portfolio company’s science-led program could change how we approach mental wellness — and how we use VR.

    If I give you two images with different movement characteristics, I can tell by the pattern of your brain waves that you’re seeing those two things, and the fact that you're paying attention to one of them actually changes that pattern.

    It takes a tiny bit of flow-state thinking. It’s kind of like when you look at an optical illusion, and you can see the two states. If you can do that, then you can decide between two choices, and as soon as you can do that, I can build an entire interface on top of that. I can ask, ‘Do you want A or do you want B?,’ like playing ‘20 Questions.’ It’s sort of the most basic way to differentiate a user’s intent.

    Basically, we considered the hardest possible situation first: a person with no physical capabilities whatsoever. Let’s solve that problem. Then we can start layering stuff on, like gaze tracking, gestures, or keyboards, to further enhance the interaction and make it even more efficient for people with the relevant physical capabilities. But it may turn out that an adaptive keyboard is actually overkill for a lot of interactions. Maybe you can get by with much less.

    Related content
    Alexa Fund company unlocks voice-based computing for people who have trouble using their voices.

    Now, if you marry that input with the massive advancements in the last five or ten years in machine learning, you can become much more aggressive about what you think the person is trying to do, or what is appropriate in that situation. You can use that information to minimize the number of interactions required. Ideally, you get to a place where you have a very efficient interface, because the user only has to decide between the things that are most relevant.

    And you can make it much more elaborate by integrating knowledge about the user’s environment, previous utterances, time of day, etc. That’s really the magic of this architecture: It leverages minimum inputs with really aggressive prediction capability to help people communicate smoothly and efficiently.

  2. Q. 

    What types of communication does this technology enable?

    A. 

    First and foremost is speech. And an easy way to understand the impact of this technology is to look at conversational rate. Right now, this conversation is probably on the order of 60 to 150 words per minute, depending on how much coffee we had and so on.

    For a lot of users of our technology, it’s like a pipe dream to even get to 20 or 30. It can take a long time to produce even very basic utterances, along the lines of ‘I am tired.’

    Now imagine breaking through to say, ‘Let’s talk about our day,’ and carrying on a conversation that provides meaning, interest, and value. That is the breakthrough capability that we’re really trying to enable.

    We have this amazing group — our Brainiac Council — of people with speech disabilities, scientists, technologists. We have more than 200 Brainiacs now, and we want to grow the council to 300.

    Cognixion ONE demo

    One of our Brainiacs uses the headset to help him communicate words that are difficult for him to pronounce, like ‘chocolate.’ He owns and operates a business where he performs for other people. During a performance, he can plug the headset directly into his sound system instead of having to talk into a microphone.

    Think of how many other people have something to say but might be overlooked. We want to help them get their point across.

    One possibility we’re exploring for future enhancement of speech generation is providing each user with their own voice, through technologies like voice banking and text-to-speech software like Amazon Web Services Polly. Personalization to such a degree could make the experience much richer and more meaningful for users.

    But speech generation is only one function of a broad ‘neuroprosthetic.’ People also interact with places, things, and media — and these interactions don’t necessarily require speech. We’re building an Alexa integration to enable home automation control and other enriched experiences. Through the headset, users can interact with their environment, control smart devices, or access news, music, whatever is available.

    In time, a device could allow users to control mobility devices for assisted navigation, robots for household tasks, settings for ambient lighting and temperature. It’s enabling a future where more people can live their daily lives more actively and independently.

  3. Q. 

    What are the next steps toward creating that future?

    A. 

    There are some key technical problems to solve. BCIs historically have been viewed somewhat skeptically, particularly the use of electroencephalography. So our challenge is to come up with a paradigm for stimulus response that enables sufficient expressive capability within the user interface. In other words, can I show you enough different kinds of stimuli to give you meaningful choices so you can efficiently use the system without becoming unnecessarily tired?

    Then it’s like whack-a-mole, or the digital equivalent. When we see a specific frequency come through, and a certain power threshold on it, we act on it. How many different unique frequencies can we disambiguate from one another at any given time?

    A simulated view of the interface in a Cognixion device
    “For some people, we make things easy, and for other people, we make things possible. That’s the way we look at it: technology in service of enhancing a human’s ability to do things,” says Andreas Forsland, founder and CEO of Cognixion.
    Cognixion

    Another challenge is that a commercial device should require a nearly zero learning curve. Once you pop it on, you need to be able use it within minutes and not hours.

    So we might couple the stimulus-response technology with a display, or speakers, or haptics that can give biofeedback to help train your brain: ‘I’m doing this right’ or ‘I’m doing it wrong.’ This would give people the positives and negatives as they interact with it. If you can close those iterations quickly, people learn to use it faster.

    Our goal is to really harden and fortify the reliability and accuracy of what we’re doing, algorithmically. We then have a very robust IP portfolio that could go into mainstream applications, likely in the form of much deeper partnerships.

    Related content
    Amazon Research Award recipient Jonathan Tamir is focusing on deriving better images faster.

    In terms of applications, we are pursuing a medical channel and a research channel. Making a medical device is much more challenging than making a consumer device, for a variety of technical reasons: validation, documentation, regulatory considerations. So it takes some time. But the initial indications for use will be speech generation and environmental control.

    Eventually, we could look to expand our indications within the control ‘bubble’ to cover additional interactions with people, places, things, and content. Plus, the system could find applications within three other healthcare bubbles. One is diagnostics in areas like ophthalmology and neurology, thanks to the sensors and closed-loop nature of the device. A second is therapeutics for conditions involving attention, focus, and memory. And the third is remote monitoring in telehealth-type situations, because of the network capabilities.

    The research side uses the same medical-grade hardware, but loaded with different software to enable biometric analysis and development of experimental AR applications. We’re preparing for production and delivery of initial demand early next year, and we’re actively seeking research partners who would get early access to the device.

    In addition to collaborators in neuroscience, neuroengineering, bionics, human-computer interaction, and clinical and translational research, we’re also soliciting input from user experience research to arrive at a final set of specific technical requirements and use-case requirements.

    We think there’s tremendous opportunity here. And we’re constantly being asked, ‘When can this become mainstream?’ We have some thoughts and ideas about that, of course, but we also want to hear from the research community about the use cases they can dream up.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques