This is an image with six separate photos, one of an Amazon fulfillment center, another of female scientist Belinda Zend, a third of a Pi Day billboard in Times Square with an image of Marie Curie, a fourth with an image of Josh Miele at a computer, a fifth of an Alexa Echo device, and a sixth of a Formula 1 race car.
Images from some of the stories that captivated our readers in the first half of 2022, including Belinda Zeng (top row, middle), head of applied science and engineering, Amazon Search Science and AI, who earlier this year shared her thoughts on what it takes to succeed as a scientist at Amazon, and MacArthur Fellow Josh Miele (lower left), who has merged a lifelong passion for science with a mission to make the world more accessible for people with disabilities.

Ten stories from the first half of 2022 that captivated readers

From Josh Miele's passion for making the world more accessible to improving forecasting by learning quantile functions, these stories resonated with our audience.

  1. Josh Miele, in a purple dress shirt, sits at a desk in an office, he is typing and looking at a computer screen, there are chairs and desks in the background
    Josh Miele, an Amazon principal accessibility researcher, was selected a 2021 MacArthur Foundation Fellow. He has spent his career developing tools to make the world more accessible for people who are blind and visually impaired.
    Meg Coyle / Amazon

    In September 2021, when Josh Miele, an Amazon principal accessibility researcher, got a text from someone at the MacArthur Foundation requesting a phone call, his heart leapt. For anyone in the arts and sciences, a MacArthur Fellowship, known as the “genius” grant, is akin to winning the lottery.

    For Miele, who is blind and has spent his career developing tools to make the world more accessible for people who are blind and visually impaired, a MacArthur grant had long been a fantastical dream. Learn how he has merged a lifelong passion for science with a mission to make the world more accessible for people with disabilities.

  2. Belinda Zeng, the head of applied science and engineering at Amazon Search Science and AI, is seen standing outside in Costa Rica on a sunny day, a wire fence is just behind her in the foreground, and a valley and mountains are seen in the background
    Belinda Zeng is the head of applied science and engineering at Amazon Search Science and AI.
    Courtesy of Belinda Zeng

    Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, has participated in hundreds of interviews for science roles across the company.

    Earlier this year, she shared her thoughts on what it takes to succeed as a scientist at Amazon — including the lessons she learned as a Bar Raiser: experienced interviewers who help to raise the Amazon recruiting standard.

    Learn what the hiring team looks for and which three Leadership Principles stand out for scientists.

  3. Multilingual Alexa.png
    The MASSIVE dataset is a step toward the creation of multilingual natural-language-understanding models that can generalize easily to new languages.

    Amazon researchers released a new dataset called MASSIVE, which is composed of one million labeled utterances spanning 51 languages, along with open-source code.

    The release provides examples of how to perform massively multilingual NLU modeling and allows practitioners to re-create baseline results for intent classification and slot filling.

  4. Image shows the 2022 F1 car sitting in profile on a racetrack with viewing stands in the background
    The F1 engineering team collaborated with AWS to explore the science of how cars interact when racing in close proximity.
    F1

    When the 2022 FORMULA 1 (F1) racing season started in March, teams will took to the track with newly designed cars engineered to give fans — and drivers — more of the wheel-to-wheel action they’ve been seeking.

    Learn how the F1 engineering team collaborated with AWS to develop new design specifications to help make races more competitive.

  5. Protein graphs.png
    Examples of graph representations of proteins.

    At Amazon Web Services, the use of machine learning to make the information encoded in graphs more useful to customers has been a major research focus.

    In this post, AWS researchers showcased a variety of graph ML applications that customers have developed in collaboration with AWS scientists, from malicious-account detection and automated document processing to knowledge-graph-assisted drug discovery and protein property prediction.

  6. Quantile function animation.gif
    The quantile function is simply the inverse of the cumulative distribution function (if it exists). Its graph can be produced by flipping the cumulative distribution function's graph over.

    The quantile function is a mathematical function that takes a quantile (a percentage of a distribution, from 0 to 1) as input and outputs the value of a variable. It can answer questions like, “If I want to guarantee that 95% of my customers receive their orders within 24 hours, how much inventory do I need to keep on hand?” As such, the quantile function is commonly used in the context of forecasting questions.

    In practical cases, however, we rarely have a tidy formula for computing the quantile function. Instead, statisticians usually use regression analysis to approximate it for a single quantile level at a time. That means that if you decide you want to compute it for a different quantile, you have to build a new regression model — which, today, often means retraining a neural network.

    In a pair of papers presented at this year’s International Conference on Artificial Intelligence and Statistics (AISTATS), Amazon researchers describe an approach to learning an approximation of the entire quantile function at once, rather than simply approximating it for each quantile level.

  7. An overhead shot inside an Amazon fulfillment center shows hundreds of boxes on conveyor belts along with people monitoring the flow of those packages
    Amazon's scale makes picking the right package for each product a challenge. Fortunately, machine learning approaches — particularly deep learning — thrive on big data and massive scale. These tools have helped Amazon reduce per-shipment packaging weight by 36% and eliminate more than a million tons of packaging.

    Finding the right amount of packaging to ship an item can be challenging — and at Amazon, an ever-changing catalog of hundreds of millions of products makes it an ongoing challenge.

    Fortunately, machine learning approaches — particularly deep learning — thrive on big data and massive scale, and a pioneering combination of natural language processing and computer vision is enabling Amazon to hone in on using the right amount of packaging. Learn how these tools have helped Amazon drive change over the past six years, reducing per-shipment packaging weight by 36% and eliminating more than a million tons of packaging, equivalent to more than 2 billion shipping boxes.

  8. Block Corruption Detection.gif
    The initial version of Amazon Prime Video's block corruption detector uses a residual neural network to produce a map indicating the probability of corruption at particular image locations, binarizes that map, and computes the ratio between the corrupted area and the total image area.

    Streaming video can suffer from defects introduced during recording, encoding, packaging, or transmission, so most subscription video services — such as Amazon Prime Video — continually assess the quality of the content they stream.

    Manual content review — known as eyes-on-glass testing — doesn’t scale well, and it presents its own challenges, such as variance in reviewers’ perceptions of quality. More common in the industry is the use of digital signal processing to detect anomalies in the video signal that frequently correlate with defects.

    Three years ago, the Video Quality Analysis (VQA) group in Prime Video started using machine learning to identify defects in captured content from devices, such as gaming consoles, TVs, and set-top boxes, to validate new application releases or offline changes to encoding profiles. Learn how they've been applying the same techniques to problems such as real-time quality monitoring of thousands of channels and live events and to analyzing new catalogue content at scale.

  9. A screen grab of the Amazon Music website
    Since 2018, Amazon Music customers in the US have been able to converse with the Alexa voice assistant. Progress in machine learning has recently made the Alexa music recommender experience even more successful and satisfying for customers.

    Since 2018, Amazon Music customers in the US who aren’t sure what to choose have been able to converse with the Alexa voice assistant. The idea is that Alexa gathers the crucial missing information to help the customer arrive at the right recommendation for that moment. The technical complexity of this challenge is hard to overstate, but progress in machine learning (ML) at Amazon has recently made the Alexa music recommender experience even more successful and satisfying for customers.

    Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

  10. Amazon Science celebrates Pi Day

    To mark Pi Day this year, Amazon Science utilized a Times Square billboard to honor scientists, engineers, and mathematicians past, present, and future.

    The billboard display ran from midnight to 8 a.m. and again — for 3 hours and 14 minutes — from 3:14 p.m. to 6:28 p.m. The display began by honoring Marie Curie, the first woman to be awarded a Nobel Prize in 1903 for her contributions to physics. It was Curie who once famously said, “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.”

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience. We are open to hiring candidates to work out of one of the following locations: Denver, CO, USA | Seattle, WA, USA
US, WA, Seattle
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Data Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with ambiguity. - Manage and drive the technical and analytical aspects of Advertiser segmentation; continually advance approach and methods. - Write code (Python, R, Scala, etc.) to analyze data and build statistical models to solve specific business problems - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support decision making. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Provide requirements to develop analytic capabilities, platforms, and pipelines. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose solution for the business problem you defined - Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. - Write code (python or another object-oriented language) for data analyzing and modeling algorithms. A day in the life The Senior Data Scientist will have the opportunity to use one of the world's largest eCommerce and advertising data sets to influence the evolution of our products. This role requires an individual with excellent business, communication, and technical skills, enabling collaboration with various functions, including product managers, software engineers, economists and data scientists, as well as senior leadership. This role will create and enhance performance monitoring reports to find insights that product and business team should focus on. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. This role will influence the direction of the business by leveraging our data to deliver insights that drive decisions and actions. The role will involve translating broad business problems into specific analytics projects, conducting deep quantitative analyses, and communicating results effectively. The role will help the organization identify, evaluate, and evangelize new techniques and tools to continue to improve our ability to deliver value to Amazon’s customers. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire an Applied Scientist to work on the embedded software for our control system. The position is on-site at our lab, located on the Caltech campus in Pasadena, CA. The ideal candidate will be able to translate high-level requirements (e.g. latency, bandwidth, architecture) into software/firmware implementations (e.g. low-level device drivers, kernel modules, Python APIs) compatible with our FPGA-based control systems. This requires someone who (1) has a strong desire to work within a team of scientists and engineers, and (2) demonstrates ownership in initiating and driving projects to completion. Key job responsibilities - Develop embedded software in C, C++ or Rust for high-performance real-time tasks. - Develop Linux and/or real-time operating system (RTOS) features required to operate control system. - Develop FPGA gateware that drives domain-specific functions of our control hardware. - Develop user-space API that exposes low-level features, preferably in Python. - Develop, test, and optimize control system features on bench-top and in real-world conditions. - Own the stability of control system software and firmware. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem-solving and excellent communication skills. Working effectively within a team environment is essential. You will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The lifetime of your projects will likely begin with a lot of discussion and negotiation with our scientists and engineers to translate their software and hardware feature requests into design proposals that demonstrate sensible trade-offs between complexity and delivery. Once a design proposal has been accepted, you will implement it in a logical and maintainable manner. You will also be encouraged to take ownership over the stability and quality of the software and hardware stack by identifying, proposing, and implementing features that will accelerate our realization of quantum computing technologies. You will be joining the Control & Calibration Software team within the AWS Center of Quantum Computing. Our team is comprised of scientists and engineers who are building scalable software that enables quantum computing technologies. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
US, WA, Seattle
Alexa is the Amazon cloud service that powers Echo, the groundbreaking Amazon device designed around your voice. We believe voice is the most natural user interface for interacting with technology across many domains; we are inventing the future. Alexa Audio is responsible for fulfilling customers requests for all types of audio content (Music, Radio, Podcasts, Books, custom sounds) across all Alexa enabled devices. This covers a broad set of experiences including search, browse, recommendations, playback, and devices grouping and controls. We are seeking a talented, self-directed Applied Scientists who would come up with state of the art semantic search and recommendation techniques that work with both voice and visual interfaces. This is a unique opportunity where you will be working on latest technologies including LLMs, and also see it impact customer's lives in meaningful ways. Responsibilities - Apply advance state-of-the-art artificial intelligence techniques and develop algorithms in areas of personalization, voice based dialogue systems and natural language information retrieval. - Design scientifically sound online experiments and offline simulations to study and improve products. - Work closely with talented engineers to create scalable models and put them to production. - Perform statistical analyses on large data sets, identify problems, and propose solutions. - Work with partner science teams to identify collaboration opportunities. Work hard. Have fun. Make history. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, London
Amazon Advertising is looking for an Applied Scientist to join its initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies.The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
DE, Berlin
The Amazon Artificial General Intelligence (AGI) team is looking for a passionate, highly skilled and inventive Senior Applied Scientist with strong machine learning background to lead the development and implementation of state-of-the-art ML systems for building large-scale, high-quality conversational assistant systems. Key job responsibilities - Use deep learning, ML and NLP techniques to create scalable solutions for creation and development of language model centric solutions for building personalized assistant systems based on a rich set of structured and unstructured contextual signals - Innovate new methods for contextual knowledge extraction and information representation, using language models in combination with other learning techniques, that allows effective grounding in context providers when considering memory, cpu, latency and quality - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in personal knowledge aggregation, processing and verification - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think Big about the arc of development of conversational assistant system personalization over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team A day in the life As a Senior Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. We are open to hiring candidates to work out of one of the following locations: Berlin, DEU
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Artificial General Intelligence (AGI) organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services . We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, CA, Santa Clara
Amazon is looking for world class scientists and engineers to join its AWS AI Labs working within natural language processing. This group is entrusted with developing core data mining, natural language processing, and machine learning solutions for AWS services. At AWS AI Labs you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale natural language processing solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
Amazon Web Services (AWS) is building a world-class marketing organization, and we are looking for an experienced Applied Scientist to join the central data and science organization for AWS Marketing. You will lead AWS Measurement, targeting, recommendation, forecasting related AI/ML products and initiatives, and own mechanisms to raise the science and measurement standard. You will work with economists, scientists and engineers within the team, and partner with product and business teams across AWS Marketing to build the next generation marketing measurement, valuation and machine learning capabilities directly leading to improvements in our key performance metrics. A successful candidate has an entrepreneurial spirit and wants to make a big impact on AWS growth. You will develop strong working relationships and thrive in a collaborative team environment. You will work closely with business leaders, scientists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. The ideal candidate will have experience with machine learning models and causal inference. Additionally, we are seeking candidates with strong rigor in applied sciences and engineering, creativity, curiosity, and great judgment. You will work on high-impact, high-visibility products, with your work improving the experience of AWS leads and customers. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities * Lead the design, development, deployment, and innovation of advanced science models in the strategic area of marketing measurement and optimization. * Partner with scientists, economists, engineers, and product leaders to break down complex business problems into science approaches. * Understand and mine the large amount of data, prototype and implement new learning algorithms and prediction techniques to improve long-term causal estimation approaches. * Design, build, and deploy effective and innovative ML solutions to improve components of our ML and causal inference pipelines. * Publish and present your work at internal and external scientific venues in the fields of ML and causal inference. * Influence long-term science initiatives and mentor other scientists across AWS. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | New York City, NY, USA | Seattle, WA, USA