FiddlerAI_LeadImage.gif

Fiddler's Model Performance Monitoring service is an all-in-one platform that allows customers to monitor, observe, explain, and analyze their AI systems.
Credit: Fiddler

Fiddler.ai CEO Krishna Gade on the emerging category of explainable AI

The founder and CEO of this Alexa Fund portfolio company answers three questions about ‘responsible AI’.

Editor’s Note: This interview is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. The Alexa Fund first invested in Fiddler.ai in August 2020, and then in June of this year participated in the company’s $32 million funding round.

Gartner Group, the world’s leading research and advisory company, recently published its top strategic technology trends for 2022. Among them is what Gartner terms “AI Engineering”, or the discipline of operationalizing updates to artificial intelligence models by “using integrated data and model and development pipelines to deliver consistent business value from AI,” and by combining “automated update pipelines with strong AI governance.”

Gartner analysts further stated that by 2025 “the 10% of enterprises that establish AI engineering best practices will generate at least three times more value from their AI efforts than the 90% of enterprises that do not.”

Krishna_Gade_Fiddler_AIportrait (002).jpg
Krishna Gade, a founder and CEO of Fiddler.ai.
Credit: Fiddler.ai

That report, and the surging interest in the topic of explainable AI, or XAI, is validation for Krishna Gade and his co-founders of Fiddler.ai, who started the company in 2018 with the belief that businesses needed a new kind of explainable AI service to address issues of fairness, accountability, transparency, and trust.

The idea behind the company’s formation emerged from Gade’s previous engineering manager role at Facebook, where he led a team that built tools to help the company’s developers find bugs, and make the company’s News Feed more transparent.

“When I joined Facebook [in 2016], the problem we were addressing was one of having hundreds of models coming together to make decisions about how likely it would be for an individual to engage with the content, or how likely they would comment on a post, or share it. But it was very difficult to answer questions like ‘Why am I seeing this story?’ or ‘Why is this story going viral?’”.

That experience, Gade says, is what led him to form Fiddler.ai with his co-founders, Amit Paka and Manoj Cheenath.

“I realized this wasn’t a problem that just Facebook had to solve, but that it was a very general machine learning workflow problem,” Gade adds. “Until that point, we had lots of tools focused on helping data scientists and machine learning engineers to build and deploy models, but people weren’t focused on what happened after the models went into production. How do you monitor them? How do you explain them? How do you know that you can continue to trust them? Our vision was to create a Tableau-like tool for machine learning that could unify the management of these ML models, instrument them, monitor them, and explain how they’re behaving to various stakeholders.”

Amazon Science connected with Gade recently, and asked him three questions about AI’s “black box” problem, some of the biggest challenges and opportunities being addressed in the emerging field of explainable AI, and about his company’s machine learning model operations and monitoring solutions.

Q. A quick search of XAI on arXiv produces a large body of research focusing on AI’s “black box” problem. How is Fiddler addressing this challenge, and how do you differentiate your approach from others?

With AI, you’re training a system; you’re feeding it large volumes of data, historical data, both good and bad. For example, let's say you're trying to use AI to classify fraud, or to figure out the credit risk of your customers, or which customers are likely to churn in the future.

Fiddler.ai CEO Krishna Gade talks explainable AI

In this process you’re feeding the system this data and you're building a system that encodes patterns in the data into some sort of a structure. That structure is called the model architecture. It could be a neural network, a decision tree or a random forest; there are so many different model architectures that are available.

You then use this structure to attempt to predict the future. The problem with this approach is that these structures are artifacts that become more and more complex over time. Twenty years ago when financial services companies were assessing credit risk, they were building mostly linear models where you could see the weights of the equation and actually read and interpret them.

Whereas today’s machine learning and deep learning models are not human interpretable (sometimes simply because of their complexity) in the sense that you cannot understand how the structure is coming together to arrive at its prediction. This is where explainability becomes important because now you've got a black box system that could actually be highly accurate but is not human-readable. Without human understanding of how the model works, there is no way to fully trust the results which should make stakeholders uneasy. This is where explainability is adding business value to companies so that they can bridge this human-machine trust gap.

Without human understanding of how the model works, there is no way to fully trust the results which should make stakeholders uneasy.
Krishna Gade

We’ve devised our explainable AI user experience to cater to different model types to ensure explanations allow for the various factors that go into making predictions. Perhaps you have a credit underwriting model that is predicting the risk of a particular loan. These types of models typically are ingesting attributes like the amount of the loan request, the income of the person that's requesting the loan, their FICO score, tenure of employment, and many other inputs.

These attributes go into the model as inputs and the model outputs a probability of how risky you are for approving this loan. The model could be any type, it could be a traditional machine learning model, or a deep learning model. We visualize explanations in context of the inputs so a data scientist can understand which predictive features have the most impact on results.

We provide ways for you to understand that this particular loan risk probability is, for example, 30 percent, and here are the reasons why — these inputs are contributing positively by this magnitude, these inputs are contributing negatively by this magnitude. It is like a detective plot figuring out root-cause, and the practitioner can interactively fiddle with the value and weighting of inputs — hence the name Fiddler.

So you can ask questions like ‘Okay, the loan risk probability right now is 30% because the customer is asking for $10,000 loan. What if the customer asked for an $8,000 loan? Would the loan risk go down? What if the customer was making $10,000 more in income? Or what if the customer’s FICO score was 10 points higher’? You can ask these counterfactual questions by fiddling with inputs and you'll get real-time explanations in an interactive manner so you can understand not only why the model is making its predictions, but also what would happen if the person requesting the loan had a different profile. You can actually provide the human in the loop with decision support.

We provide a pluggable service which is differentiated from other monolithic, rigid products. Our customers can develop their AI systems however they want. They can build their own, use third-party, or open-source solutions. Or they can bring their models together with ours, which is what we call BYOM, or bring your own model, and we’ll help them explain it. We then visualize these explanations in various ways so they can show it not only to the technical people who built the models, but also to business stakeholders, or regulatory compliance stakeholders.

Q. What do you consider to be some of the biggest opportunities and challenges being addressed within the field of explainable AI today?

So today there are four problems that are introduced when you put machine learning models into production.

One is the black box aspect that I talked about earlier. Most models are becoming increasingly complex. It is hard to know how they work and that creates a mistrust in how to use it and how to assure customers your AI solutions are fair.

Number two is model performance in terms of accuracy, fairness, and data quality. Unlike traditional software performance, model building is not static. Traditional software will behave the same way whenever you interact with it. But machine learning model performance can go up and down. This is called model drift. Teams who developed these models realized this more acutely during the pandemic, finding that they had trained their models on the pre-pandemic data, and now the pandemic had completely changed user behavior.

On an e-commerce site, for example, customers were asking for different types of things, toilet paper being one of those early examples. We had all kinds of varying factors — people losing jobs, working from home, and the lack of travel — any one of which would impact pricing algorithms for the airlines.

Most models are becoming increasingly complex. It is hard to know how they work and that creates a mistrust in how to use it and how to assure customers your AI solutions are fair.
Krishna Gade

Model drift has always been there, but the pandemic showed us how much impact drift can have. This dramatic, mass-drift event is an opportunity for businesses that realize they not only need monitoring at the high level of business metrics, but they also need monitoring at the model level because it is too late to recover by the time issues show up in the business metrics. Having early warning systems for how your AI product is behaving has become essential for agility — identifying when and how model drift is happening has become table-stakes.

Third is bias. As you know, some of these models have a direct impact on customers’ lives. For example, getting a loan approved or not, getting a job, getting a clinical diagnosis. Any of these events can change a person’s life, so a model going wrong, and going wrong in a big way for a certain sector of society, be it demographic, ethnicity, or gender or other factors can be really harmful to people. And that can seriously damage a company’s reputation and customer trust.

We’ve seen examples where a new credit card is launched and customers complain about gender discrimination where husbands and wives are getting 10x differences in credit limits, even though they have similar incomes and FICO scores. And when customers complain, customer support representatives might say ‘Oh, it’s just the algorithm, we don’t know how it works.’ We can’t abdicate our responsibility to an algorithm. Detecting bias earlier in the lifecycle of models and continuously monitoring for bias is super critical in many industries and high-stakes use cases.

The fourth aspect is governance and compliance. There is a lot of news these days about AI and the need for regulation. There is likely regulation coming, or in certain countries it already has come. Businesses now have to focus on how to make their models compliant. For example, regulation is top of mind in some sectors like financial services where there already are well defined regulations for how to build compliant models.

These are the four factors creating an opportunity for Fiddler to help our customers address these challenges, and they’re all linked by a common goal to build trust, both for those building the models, and for customers knowing they can believe in the integrity of our customers’ products.

Q. Fiddler provides machine learning operations and monitoring solutions. Can you explain some of the science behind these solutions, and how customers are utilizing them to accelerate model deployment?

There are two main use cases for which customers turn to Fiddler. The first is pre-production model validation. So even before customers put the model into production, they need to understand how it is working: from an explainability standpoint, from a bias perspective, from understanding data imbalance issues, and so on.

Fiddler offers its customers many insights that can help them understand more about how the model they've created is going to work. For example, customers in the banking sector may use Fiddler for model validation to understand the risks of those models even before they’re deployed.

The second use case is post-production model monitoring. So now a business deploys a model into production – how is that model behaving? With Fiddler, users can set up alerts for when things go wrong so their machine learning engineers or data scientists can diagnose what’s happening.

Let’s say there’s model drift, or there are data-quality issues coming into your pipelines, and the accuracy of your model is going down. You can now figure out what's going on and then fix those issues. Any business or team that is deploying machine learning models needs to understand what is going on.

FiddlerAI_FeedbackLoop_02.jpg
Fiddler CEO Krishna Gade says there are two main reasons customers turn to Fiddler: The first is pre-production model validation, the second is post-production model monitoring.
Credit: Fiddler

We are seeing traction, in particular, within a couple of sectors. One is digital-native companies that need to quickly deploy models and proactively monitor models. They need to observe how their models are performing in production, and how they're affecting their business metrics.

When it comes to financial services it’s interesting because they have experienced increased regulation, particularly since 2008. Even before they were starting to use machine learning models, they were building handcrafted quantitative models. In 2008 we had the economic crisis, bank bail outs, and the Fed institutionalized the SR 11-7 regulation, which mandated risk management of every bank model with stricter requirements for high-risk models like credit risk. So model risk management is a process that every bank in the United States, Europe and elsewhere must follow.

Today, the quantitative models that banks use are being replaced or complemented by machine learning models due to the availability of a lot more data, specialized talent, and the tools to build more machine learning and deep learning models. Unfortunately, the governance approaches used to minimize risk and validate models in the past are no longer applicable for today’s more sophisticated and complex models.

The whole pre-production model validation — understanding all the risks around models — and then post production model monitoring, which combined is called model risk management, is leading banks to look to Fiddler and others to help them address these challenges.

All of this comes together with our model management platform (MPM); it is a unified platform that provides a common language, metrics, and centralized controls that are required for operationalizing ML/AI with trust.

Our pluggable service allows our customers to bring a variety of models. They can be trained on structured data sets or unstructured data sets, tabular data or text or image data, and they can be visualized for both technical and non-technical people at scale. Our customers can run their models wherever they want. They can use our managed cloud service, but they can also run it within their own environments, whether that’s a data center or their favorite cloud provider of choice. So the plugability of our solution, and the fact that we’re cloud and model agnostic is what differentiates our product.

Research areas

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation