Amazon's Machine Learning University is making its online courses available to the public

Classes previously only available to Amazon employees will now be available to the community.

Machine learning is a field in computational science that analyzes patterns and structures in data to help with learning, reasoning, and decision-making—all without human interaction. Data is the lifeblood of business, and machine learning helps identify signals among the data noise.

More from MLU
Fun visual essays explain key concepts of machine learning.

Machine learning (ML), a subset of artificial intelligence, is at the center of Amazon’s business. It’s used by teams across the company, from the Supply Chain Optimization team to improve its product forecasts, and the Alexa science team to revolutionize daily convenience for customers, to the Amazon Go team for enabling a checkout-free shopping experience, and by the Amazon.com team, in order to enhance customers’ shopping experiences. Moreover, Amazon Sagemaker is an AWS service that provides developers and data scientists the ability to build, train, and deploy machine learning models, attracting customers such as NASA, the National Football League and GE Healthcare.

Machine learning has the potential to transform businesses in all industries, but there’s a major limitation: demand for individuals with ML expertise far outweighs supply. That’s a challenge for Amazon, and for companies big and small across the globe.

Find more free MLU courses

Subscribe to the Machine Learning University YouTube channel to get all of the latest courses. And subscribe to the Amazon Science YouTube channel to learn about the work scientists are doing to bring products and services at Amazon to life.

To help meet that demand, Amazon founded its in-house Machine Learning University (MLU) in 2016. MLU’s curriculum is designed to sharpen the skills of current ML practitioners, while also giving neophytes the tools they need to deploy machine learning for their own projects. Classes are taught by Amazon ML experts.

Three accelerated online courses are now available and will expand to include nine more in-depth courses before year’s end. Beginning in 2021, all MLU classes will be available via on-demand video, along with associated coding materials.

Machine Learning University course on natural language processing
Cem Sazara, an Amazon applied scientist, is the teacher for this Machine Learning University course on natural language processing (NLP). It is one of three initial online courses being offered by MLU. You can find the accompanying course materials on GitHub, and watch the rest of the classes on the Machine Learning University YouTube page.

The first three online courses cover natural language processing (the machine understanding of human language), computer vision (the machine understanding of images and video), and tabular data (machine learning associated to spreadsheet-like tables).

“Machine Learning University got its start from the idea that we were going to have a difficult time finding enough people with ML skills to meet our needs,” says Brent Werness, an AWS research scientist who is, in effect, MLU’s academic director. “Universities can’t develop students with ML skills fast enough for Amazon, much less for all the other companies out there.

Brent Werness and Bree Al-Rashid
Brent Werness, AWS research scientist, and Bree Al-Rashid, who manages the Machine Learning University team, are leading the initiative to bring Amazon's Machine Learning University classes online. This photo was taken prior to the COVID-19 pandemic.
Credit: Dave Quigg

“By going public with the classes, we are contributing to the scientific community on the topic of machine learning, and making machine learning more democratic,” Werness adds. “This field isn’t limited to individuals with advanced science degrees, or technical backgrounds. This initiative to bring our courseware online represents a step toward lowering barriers for software developers, students and other builders who want to get started with practical machine learning.”

MLU courseware is developed via several mechanisms, says Werness. Often, a class will be created to address a specific business problem, such as in computer vision, or natural language processing. In other cases, advances in machine learning suggest changes to the curriculum.

“That way we stay in touch with the business needs, and keep up with advances, such as recent improvements in state-of-the-art AutoML solutions provided by systems like AutoGluon,” says Werness.

MLU’s core curriculum is challenging, and several courses require a multi-week study of the mathematics that are foundational to ML and AI, but the program also now offers accelerated courseware, such as the initial classes being made publicly available, that give students a quick overview of a topic.

Machine Learning University course on computer vision
Rachel Hu, AWS applied scientist, teaches the Machine Learning University course on computer vision. You can find the accompanying course materials on GitHub and watch the rest of the classes on the Machine Learning University YouTube page.

“Instead of a three-class sequence that takes upwards of 18 or 20 weeks to complete, in the accelerated classes we can engage students with machine learning right up front,” says Ben Starsky, MLU program manager. “They can get their hands dirty very quickly in the areas that will provide an opportunity to apply machine-learning concepts to solve business problems. You may not learn everything you need to know in three days, but you’ll know enough to ask, ‘Is this an opportunity for addressing my business problem?’”

MLU classes are taught by Amazon scientists, and some courseware incorporates a textbook, Dive into Deep Learning, written by Amazon scientists Aston Zhang, Mu Li, Zachary Lipton, and Alex Smola. The book offers a detailed yet accessible path toward machine-learning knowledge.

In her work with Amazon students, MLU instructor Rachel Hu says she enjoys the problems they bring into class—an experience she expects to carry over to the public online class.

“When I’m teaching a class for Amazon, I also feel like I’m learning a lot,” says Hu, an AWS applied scientist who previously was a graduate student instructor for an Introduction to Deep Learning class at the University of California, Berkeley. “That’s because students ask great questions. In industry, engineers are solving big problems every day, and those can be really interesting. That also helps us make the courses more relevant to real-world needs.”

Machine Learning University course on tabular data
Paula Grajdeanu, a technical training specialist, teaches this Machine Learning University course on tabular data. You can find the accompanying course materials on GitHub and watch the rest of the classes on the Machine Learning University YouTube page.

Similar to other open-source initiatives, MLU’s courseware will evolve and improve over time based on input from the builder community.

To help make the online classes more engaging, Starsky shipped mobile recording studios to the MLU instructors. “The teachers set up the recording studios in their living rooms or basements,” he says. “That way we get better audio and video than from a webcam on a laptop.”

Demand for machine-learning classes is certain to grow as the technology pervades more and more areas of business. Werness says MLU is currently rebuilding its curriculum, in part to further integrate “Dive into Deep Learning” into class sessions.

“We want to make sure we’re teaching the important things up front and that we’re making good use of students’ time,” he says. “With the transition to working from home, it’s even harder now for class participants to set aside multiple hours of time. We want to be flexible in how people can take these classes.”

Research areas

Related content

US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
NL, Amsterdam
Ring is on a mission to keep people close to what's important. From the video doorbell to the DIY Ring Alarm system, Ring’s smart home security product line offers users affordable whole-home and neighborhood security. At Ring, we are committed to making home and neighborhood security accessible and effective for everyone – while working hard to bring communities together. Ring is an Amazon company. For more information, visit (https://ring.com/about). Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique possibility to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. You will be part of a team committed to pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work on scale. This position requires experience with developing efficient computer vision algorithms on resource-constrained computing platforms on edge. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. The role is open for multiple locations across Europe.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities As a Data Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Diego
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities As a Senior Data Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MA, Boston
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Applied Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder. Publish novel developments in internal and external papers, forums, and conferences - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
Amazon Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization. We also own scalable solutions to reduce risks, improve safety, enhance personalized experiences of our delivery associates and partners. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. We are looking for a passionate individual with strong machine learning and analytical skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. As a Senior Data Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including supervised and unsupervised machine learning, non-convex optimization, causal inference, natural language processing, linear programming, reinforcement learning, and other forecast algorithms. Key job responsibilities Key job responsibilities * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale and complexity. * Build Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Run A/B experiments, gather data, and perform statistical analysis. * Measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. * Research new and innovative machine learning approaches. Help coach/mentor junior scientists in the team. * Willingness to publish research at internal and external top scientific venues. Write and pursue IP submissions.
US, PA, Pittsburgh
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop systems for real-world interactions with a focus on the speech modality. You'll develop neural efficiency algorithms, acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations will directly impact customers through new AI products and services.
US, CA, Pasadena
The AWS Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in Mixed-Signal Design. Working alongside other scientists and engineers, you will design and validate hardware performing the control and readout functions for AWS quantum processors. Candidates must have a strong background in mixed-signal design at the printed circuit board (PCB) level. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development through multiple product life-cycles, from requirements generation to design validation. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the control of AWS quantum processor systems. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems, often ones not encountered before, across our hardware and software stacks. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both strict performance and cost metrics. Provide mentorship to junior team members. Research enabling technologies necessary for AWS to produce commercially viable quantum computers.
CA, BC, Vancouver
We are looking for a senior audio applied scientist with experience and expertise in speech and audio signal processing, machine learning, automatic speech recognition, and/or natural language processing to work on state-of-the-art solutions for applications including speech enhancement, voice analytics, and real-time transcription of conversational audio. Amazon Connect is a highly disruptive cloud-based contact center that enables businesses to deliver engaging, dynamic, and personal customer service experiences. Amazon Connect is the result of the ten years of development that went into building the tools Amazon uses to provide its award winning customer service at massive and launching it as a publicly available service. With Amazon Connect, you can create your own cloud-based contact center and be taking calls in minutes. Our team’s charter as part of the Amazon Connect organization is to think big, re-imagine, innovate, and deliver novel, state-of-the-art solutions to audio and video problems. We are interested in all aspects of audio, video, and media technology, and we leverage the latest machine learning and signal processing techniques to surprise and delight our customers. Our applications include real-time audio/video communications, audio/video scene analysis, anomaly detection, audio/speech/music/image/video processing, enhancement, analysis, synthesis and coding. We have the nimbleness of a small startup but, at the same time, the immense resources of AWS - the world leader in cloud computing - behind us as well. If you want to innovate on the cutting edge while having a profound and direct impact on the end customer experience, this is the team to be on! About the team AWS Applications and Higher Level Abstractions (Apps) provides horizontal and industry vertical applications for business users with the same on-demand scalability, reliability, pay-as-you-go pricing, and machine learning expertise that drive AWS services. The AWS Applications group includes services such as Amazon Connect (a cost-effective cloud contact center), our End User Computing (including Amazon Workspaces, AppStream, etc.), Marketing Tech (Amazon Pinpoint), and Autonomous Checkout and Biometric Identity Services (Just Walk Out, Amazon One) for retail, sports, travel, and other verticals. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
IN, KA, Bengaluru
The Amazon Artificial General Intelligence (AGI) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment