Image shows Torgersen Hall on the campus of Virginia Tech, the building and pedestrian bridge are in the background, flowers are in the foreground, the sky is streaked with clouds
Amazon and Virginia Tech today announced the inaugural class of academic fellows and faculty research award recipients as part of the Amazon – Virginia Tech Initiative for Efficient and Robust Machine Learning. The initiative provides an opportunity for doctoral students who are conducting AI and ML research to apply for Amazon fellowships and supports research efforts led by Virginia Tech faculty members.
Virginia Tech

Amazon and Virginia Tech announce inaugural fellowship and faculty research award recipients

Two doctorate students and five Virginia Tech professors will receive funding to conduct research.

Amazon and Virginia Tech today announced the inaugural class of academic fellows and faculty research award recipients as part of the Amazon – Virginia Tech Initiative for Efficient and Robust Machine Learning.

“Our inaugural cohort of fellows and faculty-led projects showcases the breadth of machine learning research happening at Virginia Tech,” said Naren Ramakrishnan, the Thomas L. Phillips Professor of Engineering and director of the Amazon-Virginia Tech Initiative. “The areas represented include federated learning, meta-learning, leakage from machine learning models, and conversational interfaces.”

The initiative, launched in March of this year, is focused on research pertaining to efficient and robust machine learning. It provides an opportunity for doctoral students in the College of Engineering who are conducting AI and ML research to apply for Amazon fellowships and supports research efforts led by Virginia Tech faculty members.

Related content
Initiative will be led by the Virginia Tech College of Engineering and directed by Thomas L. Phillips Professor of Engineering Naren Ramakrishnan.

"The talent and depth of scientific knowledge at Virginia Tech is reflected in the high-quality research proposals and PhD student fellowship applications we have received,” said Prem Natarajan, vice president of Alexa AI. “I am excited about the new insights and advances in robust machine learning that will result from the work of the faculty and students who are contributing to this initiative."

“This research will not only contribute to new algorithmic advances, but also study issues pertaining to practical and safe deployment of machine learning,” Ramakrishnan said. “We are very excited that the partnership between Amazon and Virginia Tech has enabled these projects.”

The two fellows and four faculty members will each receive funding to conduct research projects at Virginia Tech across multiple disciplines. What follows are the recipients and their areas of research.

Academic fellows

Virginia Tech students Qing Guo, left, who is pursuing a PhD in statistics; and Yi Zeng, right, who is pursuing a PhD in computer science, have been named as academic fellows.
Virginia Tech students Qing Guo, left, who is pursuing a PhD in statistics; and Yi Zeng, right, who is pursuing a PhD in computer science, have been named as academic fellows.

Qing Guo is pursuing a PhD in statistics and studying under Xinwei Deng, a professor in the department of statistics. Guo, who interned as an applied scientist with Alexa AI earlier this year, is researching nonparametric mutual information estimation with contrastive learning techniques; optimal Bayesian experimental design for both static and sequential models; meta-learning based on information-theoretic generalization theory; and reasoning for conversational search and recommendation.

Yi Zeng is studying under Ruoxi Jia, assistant professor of electrical and computer engineering, while pursuing a PhD in computer science. Zing’s research entails assessing potential risks as AI is increasingly used to support essential societal tasks, such as health care, business activities, financial services, and scientific research, and developing practical and effective countermeasures for the safe deployment of AI.

Faculty research award recipients

The Virginia Tech faculty research award recipients are, top row, left to right: Peng Gao, assistant professor of computer science; Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division; bottom row, left to right, Ismini Lourentzou, assistant professor of computer science; and Walid Saad, professor of electrical and computer engineering.
The Virginia Tech faculty research award recipients are, top row, left to right: Peng Gao, assistant professor of computer science; Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division; bottom row, left to right, Ismini Lourentzou, assistant professor of computer science; and Walid Saad, professor of electrical and computer engineering.

Peng Gao, assistant professor of computer science; and Ruoxi Jia, assistant professor of electrical and computer engineering, "Platform-Agnostic Privacy Leakage Monitoring for Machine Learning Models"

"Machine learning (ML) models can expose private information of training data when confronted with privacy attacks. Despite the pressing need for defenses, existing approaches have mostly focused on increasing the robustness of ML models via modifying the model training or prediction processes, which require cooperation of the underlying AI platform and thus are platform-dependent. Furthermore, how to continuously monitor the privacy leakage and detect the leakage in real time remains an important unexplored problem. In this project, we seek to enable real-time, platform-agnostic privacy leakage monitoring and detection for black-box ML models. We will first systematically assess the privacy risks due to provision of black-box access to ML models. We will then propose new platform-agnostic privacy leakage detection methods by identifying self-similar, low-utility model queries. We will finally propose a stream-based system architecture that enables real-time privacy leakage monitoring and detection."

Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division, "FEDGUARD Safeguard Federated Learning Systems against Backdoor Attacks"

"Rapid developments in machine learning have compelled organizations and individuals to rely more and more on data to solve inference and decision problems. To ease the privacy concerns of data owners, researchers and practitioners have been advocating a new learning paradigm—federated learning. Under this framework, the central learner trains a model by communicating with distributed users and keeping the training data stored locally at the users. While opening up a world of new opportunities for training machine learning models without compromising data privacy, federated learning faces significant challenges in maintaining security due to the unreliability of the distributed users. Successful completion of the project provides key enabling technologies for secure federated learning and accelerate its adoption in security-sensitive applications such as digital assistant systems."

Ismini Lourentzou, assistant professor of computer science, "Toward Unified Multimodal Conversational Embodied Agents"

"The research community has shown increasing interest in designing intelligent agents that assist humans to accomplish tasks. To do so, agents must be able to perceive the environment, recognize objects, understand natural language, and interactively ask and respond to questions. Despite recent progress on related vision-language tasks and benchmarks, most prior work has focused on building agents that follow instructions rather than endowing agents the ability to ask questions to actively resolve ambiguities arising naturally in real-world tasks. Moreover, current conversational embodied agents lack understanding of social interactions that are necessary for human-agent collaboration. Finally, due to limited knowledge transfer across tasks, generalization to unobserved contexts and scenes remains a challenge. To address these shortcomings, the objective of this proposal is to design embodied agents that know when and what questions to ask to adaptively request assistance from humans, learn to perform multiple tasks simultaneously, effectively capturing underlying skills and knowledge shared across various embodied tasks, and be able to adapt to uncertain human behaviors. The outcome will be a general-purpose embodied agent that can understand instructions, interact with humans and predict human beliefs, and reason to complete a broad range of tasks."

Walid Saad, professor of electrical and computer engineering, "Green, Efficient, and Scalable Federated Learning over Resource-Constrained Devices and Systems"

“Federated learning (FL) is a promising approach for distributed inference over the Internet of Things (IoT). However, prior FL works are limited by the assumption that IoT devices and wireless systems (e.g., 5G) have abundant resources (e.g., computing, memory, energy, communication, etc.) to run complex FL algorithms, which is impractical for real-world, resource-constrained devices and networks. The goal of this research is to overcome this challenge by designing green, efficient, and scalable FL algorithms over resource-constrained devices and wireless systems while promoting the paradigm of computing, communication, and learning system co-design. To this end, this research advances techniques from machine learning, wireless communications, game theory, and mean-field theory to yield three innovations: 1) Rigorous analysis of the joint computing, communication, and learning performance tradeoffs (e.g., between energy-efficiency, learning accuracy and efficiency, convergence time, and others) as function of the constrained system resources, 2) Optimal design of the joint learning, computing, and communication system architecture and configuration for balancing the performance tradeoffs and enabling efficient and green FL, and 3) Novel approaches for scaling the system over millions of devices. This research has tangible practical applications for all products that rely on FL over real-world wireless systems and resource-constrained devices."

Related content

US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.