Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in artificial intelligence and related fields.
515 results found
  • (Updated 5 days ago)
    Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Our Prime Air Drone Flight Sciences High Fidelity Methods (HFM) team is looking for an outstanding research scientist (RS) to develop and verify our drone systems models and flight physics models. Our models are the backbone of every flight simulation performed within Prime Air and are a critical input to business decisions, aircraft design, system verification, and aircraft certification. The HFM team’s products enable the prediction of vehicle performance metrics including range, maneuverability, tracking error, and aircraft stability. They help us understand how vehicle design and operational decisions impact business metrics like customer reachability. They are a crucial element in the design of flight control algorithms and software testing. The accuracy and reliability of these models are critical to the success of Prime Air. Key job responsibilities The person in this role is responsible for owning the development, deployment, verification, and maintenance of simulation models from end-to-end. This includes the initial gathering of the downstream customer needs, identifying the most suitable modelling approach and level of fidelity, coordinating the generation of input data, training models, developing and maintaining software interfaces, and verifying the model accuracy. This person will also be responsible for determining the most suitable modeling approach for a given physical phenomena. They will need to have a basic understanding of the types of physics and systems to be modelled including electric powertrain components, guidance and navigation system (GNS) sensors, vehicle aerodynamics, propeller performance, multibody dynamics, and atmosphere physics. They will be responsible for designing experiments for generating data used to create and verify models. They will be responsible for validating the models by leveraging uncertainty quantification and statistical analyses.
  • CA, BC, Vancouver
    Job ID: 2811528
    (Updated 5 days ago)
    Amazon ‘s Tax engine organisation is looking for a passionate and innovative science leader to take its science initiatives to new heights. Amazon Tax Engine platform backs all of the orders placed across Amazon e-commerce. We serve Amazon customers and sellers by correctly computing and collecting the tax amounts when an Amazon order is placed globally. We are responsible for correctly attributing products to the correct Tax categories applicable for the specific country, state and county, providing core calculation services that calculate taxes (sales tax and VAT) for all Amazon sales, physical and digital. Our challenges include staying on top of the complex and ever-changing global tax legislations as well as computing calculations correctly and quickly, thousands of times a second, with accuracy close to 100%. We use language models at scale for Tax classification of the diverse products in Amazon catalogue We have a growing portfolio of science problems that includes balance of predictive and generative AI -including language comprehension, causal reasoning and active learning. Key job responsibilities - Manage and mentor a talented team of senior Appleid Scientists and SDEs. - Improve process and methodologies pertaining to deliverables of the team. - Strike the right balance between experimentation and delivery for sustained impact and long term gains. - Partner with stakeholders and customers to build roadmap for new products and services.
  • US, WA, Seattle
    Job ID: 2809772
    (Updated 4 days ago)
    At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE In this role, you'll employ scalable cutting-edge machine learning (ML), deep learning (DL), and Natural Language Processing (NLP) techniques to detect and predict fraudulent activities, enhance fraud investigation capabilities, and develop advanced fraud protection and defense mechanisms. You'll leverage these technologies to analyze complex patterns in transaction data, identify anomalies, and create predictive models that can anticipate potential fraud before it occurs. Your work will be crucial in safeguarding the company's assets, protecting customers from financial harm, and maintaining the integrity of our systems. You'll translate intricate fraud patterns into actionable insights, enabling rapid response to emerging threats and informing critical business decisions related to risk management. You'll operate in an agile environment in which we own and collaborate on the life cycle of research, design, and model development of relevant projects. As an Applied Scientist, you will... - Protect Audible’s customers and content creators against the onslaught of AI-generated fraud - Develop Amazon-scale data engineering & modeling pipelines - Imagine and invent before the business asks, and create groundbreaking fraud detection and mitigation solutions using cutting-edge approaches - Work closely with other data scientists, ML experts, engineers as well as business across the globe, and on cross-disciplinary efforts with other scientists within Amazon - Contribute to the growth of the Audible Data Science team by sharing your ideas, intellectual property and learning from others ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
  • (Updated 5 days ago)
    Come build the future of smart security with us. Are you interested in helping shape the future of devices and services designed to keep people close to what’s important? ABOUT RING We started in a garage in 2012 when our founder asked a simple question: what if you could answer the front door from your phone? What if you could be there without needing to actually, you know, be there? After many late nights and endless tinkering, our first Video Doorbell was born. That invention has grown into over a decade of groundbreaking products and next-level features. And at the core of all that, everything we’ve done and everything we’ve yet to build, is that same inventor's spirit and drive to bridge the distance between people and what they care about. Whatever it is, at Ring we’re committed to helping you be there for it. (https://www.ring.com) ABOUT THE ROLE The Senior Data Scientist within Ring Data Science and Engineering plays a pivotal role in shaping how we carry the voice of our customers. We strive to understand their behaviors and preferences in order to provide them with the best experience connecting with the places, people and things that matter to them. This role will build scalable solutions and models to support our business functions (Subscriptions, Product, Customer Service). By leveraging a range of methods including statistical analysis and machine learning, you will explain, quantify, predict and prescribe in support of informing critical business decisions. You will translate business goals into agile, insightful analytics. You will seek to create value for both stakeholders and customers and inform findings in a clear, actionable way to managers and senior leaders. Key job responsibilities - Drive shared understanding among business, engineering, and science teams of domain knowledge of processes, system structures, and business requirements. - Apply domain knowledge to identify product roadmap, growth, engagement, and retention opportunities; quantify impact; and inform prioritization. - Advocate technical solutions to business stakeholders, engineering teams, and executive level decision makers. - Lead development and validation of state-of-the-art technical designs (data pipelines, data models, causal inference, predictive models, data insights/visualizations, etc) - Contribute to the hiring and development of others - Communicate strategy, progress, and impact to senior leadership A day in the life Translate/Interpret • Complex and interrelated datasets describing customer behavior, messaging, content, product design and financial impact. Measure/Quantify/Expand • Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. • Analyze historical data to identify trends and support decision making. • Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. • Provide requirements to develop analytic capabilities, platforms, and pipelines. • Apply statistical or machine learning knowledge to specific business problems and data. Explore/Enlighten • Formalize assumptions about how users are expected to behave, create statistical definition of the outlier, and develop methods to systematically identify these outliers. Work out why such examples are outliers and define if any actions needed. • Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. • Make decisions and recommendations. • Build decision-making models and propose solution for the business problem you defined. • Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. • Utilize code (Python/R/SQL) for data analyzing and modeling algorithms.
  • (Updated 5 days ago)
    Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for ML Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an ML Data Scientist, you will * Collaborate with ML scientist and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges * Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production * Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder * Provide customer and market feedback to Product and Engineering teams to help define product direction About the team The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
  • US, WA, Seattle
    Job ID: 2820652
    (Updated 5 days ago)
    As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. AWS Industry Products (IP) is a new AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for Research Scientists who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations domains. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems Using your in-depth expertise in machine learning and generative AI, you will take the lead on tactical and strategic initiatives to deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon. Extensive knowledge of both state-of-the-art and emerging AI methods and technologies is expected. Hands-on knowledge of generative AI, foundation models and commitment to learn and grow in this field are expected. Basic qualifications PhD, or Master's degree and 10+ years of quantitative field research experience Experience investigating the feasibility of applying scientific principles and concepts to business problems and products Experience analyzing both experimental and observational data sets Preferred qualifications Knowledge of R, MATLAB, Python or similar scripting language About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.
  • DE, BE, Berlin
    Job ID: 2805183
    (Updated 31 days ago)
    The Amazon Robotics team is seeking an experienced Applied Scientist to join our team. In this role you will apply the latest trends in research to solve real-world problems in robotics and AI. You will collaborate with a team of scientists and engineers building these applications. We holistically design, build, and deliver end-to-end robotic systems. Our team is also responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, machine learning scientists, software engineers, and hardware engineers to collaborate and deploy systems in the field. Key job responsibilities • Research, design, implement and evaluate complex perception, motion planning, and decision making algorithms integrating across multiple disciplines and leveraging machine learning. • Create experiments and prototype implementations of new learning algorithms and prediction techniques. • Work closely with software engineering team members to drive scalable, real-time implementations. • Collaborate with machine learning and robotic controls experts to implement and deploy algorithms, such as machine learning models. • Collaborate closely with hardware engineering team members on developing systems from prototyping to production level. • Represent Amazon in academia community through publications and scientific presentations. • Work with stakeholders across hardware, science, and operations teams to iterate on systems design and implementation. We are looking for applied scientists with expertise in any of the following: - Computer vision (including but not limited to tracking, object recognition, visual SLAM, motion prediction, reconstruction) - Machine learning (e.g. reinforcement learning, supervised learning, Bayesian methods, online learning systems, ML for robotics)
  • DE, BE, Berlin
    Job ID: 2805184
    (Updated 31 days ago)
    The Amazon Robotics team is seeking an experienced Applied Scientist to join our team. In this role you will apply the latest trends in research to solve real-world problems in robotics and AI. You will collaborate with a team of scientists and engineers building these applications. We holistically design, build, and deliver end-to-end robotic systems. Our team is also responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, machine learning scientists, software engineers, and hardware engineers to collaborate and deploy systems in the field. Key job responsibilities We have several open positions for candidates with varying levels of experience. We seek candidates who can: - Research, design, implement and evaluate novel algorithms for dexterous robotics - Work on end-to-end robotics systems, creating scalable systems for many applications - Collaborate closely with team members on developing systems from prototyping to production level - Collaborate with teams spread all over the world, in particular Boston and Seattle - Work closely with software engineering teams to drive Amazon scale, real-time implementations - Be driven by business goals We are looking for applied scientists with expertise in any of the following: - Computer vision (including but not limited to tracking, object recognition, visual SLAM, motion prediction, reconstruction) - Machine learning (e.g. reinforcement learning, supervised learning, Bayesian methods, online learning systems, ML for robotics) - Control (e.g. impedance and direct force control, dynamics, trajectory control, motion planning, simulation)
  • US, WA, Seattle
    Job ID: 2807561
    (Updated 5 days ago)
    Interested in helping build Prime's content and offer personalization system to drive huge business impact on millions of customers? Join our team of Scientists and Engineers developing algorithms to adaptively generate, optimize, and personalize the customer experience with Amazon Prime. This includes identifying who our customers are and providing them with personalized relevant content. As an ML scientist, you will partner directly with product owners to intake, build, and directly apply your modeling solutions. There are numerous scientific and technical challenges you will get to tackle in this role, such as deep learning and reinforcement learning, and their application to various types of contextual, multi-step optimization of the customer journey. We employ techniques from supervised learning, multi-armed bandits, optimization, and RL - while this role is focused on the space of discriminative and generative recommender systems. As the central science team within Prime, our expertise gets routinely called upon to weigh in on a variety of topics. We also emphasize the need and value of scientific research and have developed a strong publication and patent record (internally/externally) which you will be a part of. You will also utilize and be exposed to the latest in ML technologies and infrastructure: AWS technologies (EMR/Spark, Redshift, Sagemaker, DynamoDB, S3, ...), various ML algorithms and techniques (Random Forests, Neural Networks, supervised/unsupervised/semi-supervised/reinforcement learning, LLMs), and statistical modeling techniques. Major responsibilities - Build and develop machine learning models and supporting infrastructure at TB scale, in coordination with software engineering teams. - Leverage Bandits, Supervised Learning, and Reinforcement Learning for Contextual Recommendation and Optimization Systems. - Develop offline policy estimation tools and integrate with reporting systems. - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes. - Work closely with the business to understand their problem space, identify the opportunities and formulate the problems. - Use machine learning, data mining, statistical techniques and others to create actionable, meaningful, and scalable solutions for the business problems. - Design, develop and evaluate highly innovative models and statistical approaches to understand and predict customer behavior and to solve business problems.
  • (Updated 5 days ago)
    Are you a PhD student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics, or quantum technologies? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. For more information on the Amazon Science community please visit https://www.amazon.science.

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.