A screen grab from an NFL video shows Packers quarterback Aaron Rodgers preparing to pass the ball
In January, the National Football League announced its new QB passing score, which addressed the inconsistency across plays, games, weeks, and seasons found in previous scores. A method based on spliced binned-Pareto distributions, developed by Amazon researchers, led to the improved passing metric.

The science behind NFL Next Gen Stats’ new passing metric

Spliced binned-Pareto distributions are flexible enough to handle symmetric, asymmetric, and multimodal distributions, offering a more consistent metric.

When football fans evaluate a player’s performance, they measure the player’s execution of specific plays against an innate sense of the player’s potential. Trying to encode such judgments into machine learning models, however, has proved non-trivial.

Fans and commentators have criticized existing quarterback (QB) passing stats, such as Madden QB, the NFL passer rating, ESPN’s total quarterback rating (QBR), and the Pro Football Focus (PFF) grade, for being calibrated to obsolete data, being unrelated to winning, or scoring players anomalously — as when Kyler Murray received the low Madden QB21 rating of 77 despite being the 2019 Offensive Rookie of the Year.

Related content
Principal data scientist Elena Ehrlich uses her skills to help a wide variety of customers — including the National Football League.

On January 13, 2022, just before Super Bowl LVI, the NFL announced its new QB passing score, which seeks to improve on its predecessors’ limitations and to isolate a QB’s contributions from those of the team in a completely data-driven way.

The play level

A root problem with existing ratings is their inconsistency across plays, games, weeks, and seasons. We sought a metric that could account for play-specific dynamics and scale to different granularities with consistency.

We wanted to measure the QB’s decision making and pass execution given the game clock and the pressure he was under. For those conditions, we have directly measurable quantities, such as the defense’s movements. But how do we measure how “well” the QB performed? This is a point we address in the next section (“The model architecture”), but for now, we take yards gained as a measurable outcome. (This assumption will prove useful downstream.)

nflendzonesideline.png
An (x, y)-coordinate representation of the football field.

Since we said we wanted to take a data-driven approach, let’s look at exactly what the data is.

On each play, we receive updates every 100 milliseconds from radio frequency ID chips in the players’ shoulder pads, giving us all 22 players’ position in the (x, y)-coordinates of the field, along with their speed, acceleration, running direction, and body orientation, as shown in the image above.

This time series is of variable length, starting with the snap and ending when the QB releases the ball. For example, a QB throwing four seconds after the snap yields a time series of 40 timesteps, whereas a pass that takes just over two seconds yields a time series of 25 timesteps.

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

The figure below shows how the time series is represented. Each row corresponds to a single timestep and contains eight features (x-position, y-position, x-speed, y-speed, x-acceleration, y-acceleration, direction, and orientation) for each of 22 players, for a matrix of 176 columns and 40 rows. Features such as the number of defenders within a two-yard radius of the target receiver receive additional columns, but we eschew them here to focus on modeling technique.

nflplaytimeseriesmatrix.png
Matrix representation of the time series of a single play.

The collection of passing plays from the 2018-2020 seasons provided us with around 34,000 completions, 15,000 incompletes, and 1,200 interceptions, for more than 50,000 plays total. Feature preprocessing is a memory-intensive job, requiring two hours runtime on a ml.m5.m24xlarge instance. Modeling so large a number of time series, however, is a high-compute job.

For the model described in the upcoming section, the one-gpu p3.8xlarge instance incurred an eight-hour training time. While the NFL can afford two-hour preprocessing and eight-hour model fittings before the season commences, in live televised games, the inference returning a QB’s score for his play needs to be in real-time, like the 0.001 second per play of the following model.

The model architecture

To learn the temporal complexities within plays’ time series, we opted for a temporal convolutional network (TCN), a convolutional network adapted to handle inputs of different lengths and factor in long-range relationships between sequential inputs.

Since a play also has static attributes — such as down, score, and games remaining in the season — that influence players’ decisions and performance, we concatenate these with the TCN state and pass both to a multilayer perceptron to produce the final output, a probabilistic prediction of yards gained. To that, we compare the play’s actual yards gained.

nflplayertimeseriestcn.png
In our model, players’ time series are encoded by a temporal convolutional network (TCN), concatenated with a play’s static features, and fed to a multilayer perceptron.

Now, the network output is worth careful consideration. Naively, one might want to output a point prediction of the yards gained and train the network with an error loss function. But this fails to achieve the desired goal of measuring the outcome of a play relative to its potential.

An extra two yards gained under easier circumstances is not the same as two yards gained in more difficult circumstances, yet both would have a mean absolute error (MAE) of two yards. Instead, we opted for a distributional prediction, where the network’s outputs are parameters that specify a probability distribution.

We thought about which probability distribution function (PDF) would be most suitable. For certain plays, the PDF of yards gained would need to be asymmetrical: e.g., in a completed pass, if the QB throws to a receiver already running toward the end zone, positive yards gained are more likely than negative yards. Whereas for other plays, the PDF of yards gained would need to capture symmetry: on an interception, for example, the “negative” yards gained by the defender would balance against the possible positive yards gained by a completion.

There are even those plays for which the PDF would be bimodal: if the QB passes to a receiver with only one defender closing in, then the likelihood of yards gained lies either in the one- to two-yards range (if the receiver is tackled) or in the high-yardage range (if the receiver eludes the tackle), but not in-between. Other multi-model plays include when the QB may have to scramble for yards, like in the second play in this video.

yardsgainedpassescompletedgraphic.png
Yards gained on intercepted versus completed passes.

So we needed a distribution whose parameterization is flexible enough to accommodate multimodality, different symmetries, and light or heavy tails and whose locations and scale can vary with the clock time, current score, and other factors. We can’t meet these requirements with distributions like Gaussian or gamma, but we can meet them with the spliced binned-Pareto distribution.

The spliced binned-Pareto distribution

The spliced binned-Pareto (SBP) distribution arises from a classic result in extreme-value theory (EVT), which states that the distribution of extreme values (i.e., the tail) is almost independent of the base distribution of the data and, as shown below, can be estimated from the datapoints above the assumed upper bound (t) of the base distribution.

The second theorem of EVT states that any such distribution tail can be well-approximated by a generalized Pareto distribution (GPD) that has only two parameters, shape (x) and scale (b), and closed-form quantiles. The figure below shows the PDF of a GPD for x < 0, yielding a finite tail; x = 0, yielding an exponential tail; and x > 0, yielding a heavier-than-exponential tail.

valuesofdistribution.png
At left is a visualization of the observation that extreme values of a distribution (i.e., the tail) are almost independent of the base distribution and can be estimated from the datapoints above the assumed upper bound (t) of the base distribution. At right are probability distribution functions for generalized Pareto distributions with three different shapes.

Since we need multimodality and asymmetry for the base distribution, we modeled the base of the predictive distribution with a discrete binned distribution; as shown below, we discretize the real axis between two points into bins and predict the probability of the observation falling in each of these bins.

This yields a distribution robust to extreme values at training time because it is now a classification problem. The log-likelihood is not affected by the distance between the predicted mean and the observed point, as would be the case when using a Gaussian, Student’s t, or other parametric distribution. Moreover, the bins’ probability heights are independent of one another, so they can capture asymmetries or multiple modes in the distribution.

From the binned distribution, we delimit the lower tail by the fifth quantile and replace it with a weighted GPD. Analogously, we delimit the upper tail by the 95th quantile and replace it with another weighted GPD, to yield the SBP shown below.

binned and spliced binned graphic.png
At left is a binned distribution; at right is a spliced binned distribution, whose topmost and bottommost quantiles have been replaced with weighted generalized Pareto distributions.

The figure on the left above shows that the base distribution is indeed robust: the event represented by the extreme red dot will not bias the learned mean of the distribution but simply inflate the probability associated with the far-right bin.

However, this still leaves two problems: (i) although the red-dot event was observed to occur, the binned distribution would give it zero probability; conversely, (ii) the distribution would predict with certainty that extreme (i.e., great) plays do not occur. Because extreme yardage from deep-pass touchdowns, breakaway interceptions, etc., is rare, it is the adrenaline of the sport and exactly what we are most interested in describing probabilistically. The SBP figure above on the right graphically illustrates how the GPD tails can quantify how much less likely — i.e., harder — each incremental yard is.

The binned distribution and the GPDs are parameterized by the neural network we described above, which takes as input play matrices and outputs parameters: each of the bin probabilities, as well as x and b for each of the GPDs, which can be used to predict the probability-of-yards-gained value.

Establishing a gradient-based learning of heavy-tailed distributions has been a challenge in the ML community. Carreau and Bengio’s Hybrid Pareto model stitched GPD tails onto parametric distributions, but since the likelihood isn’t differentiable with respect to the threshold t, their model is supplemented with simulation and numerical approximations, foregoing time-varying applications. Other previous methods such as SPOT, DSPOT, and NN-SPOT, forego modeling the base and capture only the tails outside a fixed distance from the mean, which precludes higher-order non-stationarity and asymmetric tails.

While prior methods use a fixed threshold t to delimit tails, by modeling the base distribution, we obtain a time-varying threshold. Furthermore, training a single neural network to maximize the log-probability of the observed time step under the binned and GPD distributions yields a prediction that accounts for temporal variation in all moments of the distribution — the mean and variance as well as tail heaviness and scale, including asymmetric tails. The capabilities of different approaches are tabled below.

capabilitiesofdifferentapproaches.png
Capabilities of different approaches.

While we need a distributional prediction to grade a QB’s performance — to compare our model’s accuracy to other models’ — we need to use point predictions of yards gained. The table below compares the MAE of our method’s predictive median against that of a neural network with Gaussian output and against the point prediction of XGBoost, a decision-tree-based model.

meanaverageerror.png
Mean average error on yards gained for roughly 5,000 plays.

We have released Pytorch code for the spliced binned-Pareto model, along with a demo notebook.

The NGS passing score

Our model’s predictive PDF quantifies how likely each yardage gain is, for a league-average QB, given a specific play’s circumstances. Therefore, evaluating the actual yards gained in the cumulative distribution function (CDF) of that play’s SBP distribution yields a ranking between 0 and 1 of that QB’s performance relative to peer QBs.

This CDF ranking, under some further standardizations, becomes the QB passing score at the play level.

Aggregating scores over multiple plays yields game-, season-, or other split-level QB passing scores. For example, based on all targeted pass attempts in the ’21 season, Kyler Murray has a score of 87, ranking him ninth out of playoff QBs.

Under pressure, Murray's score jumps to 89; zooming in to passes between 2.5 and 4 seconds (in 2020 and 2021), Murray now scores a 99 in a five-way tie for the highest possible score. Other splits can also be contextualized with the NGS passing score, like deep passes, for example.

Finally, the tables below show that the NGS passing score correlates better with win percentages and playoff percentages than preceding passing metrics.

ngspassingscorespassingmetricsandwins.png
At left is the correlation of passing score with winning percentages and playoff percentages. At right is the comparison of passing score and other metrics.

Acknowledgments: Brad Gross

Research areas

Related content

US, CA, San Diego
Do you want to join an innovative team of scientists who use deep learning, natural language processing, large language models to help Amazon provide the best seller experience across the entire Seller life cycle, including recruitment, growth, support and provide the best customer and seller experience by automatically mitigating risk? Do you want to build advanced algorithmic systems that help manage the trust and safety of millions of customer interactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Are you excited by the opportunity to leverage GenAI and innovate on top of the state-of-the-art large language models to improve customer and seller experience? Do you like to build end-to-end business solutions and directly impact the profitability of the company? Do you like to innovate and simplify processes? If yes, then you may be a great fit to join the Machine Learning Accelerator team in the Amazon Selling Partner Services (SPS) group. Key job responsibilities The scope of an Applied Scientist III in the Selling Partner Services (SPS) Machine Learning Accelerator (MLA) team is to research and prototype Machine Learning applications that solve strategic business problems across SPS domains. Additionally, the scientist collaborates with engineers and business partners to design and implement solutions at scale when they are determined to be of broad benefit to SPS organizations. They develop large-scale solutions for high impact projects, introduce tools and other techniques that can be used to solve problems from various perspectives, and show depth and competence in more than one area. They influence the team’s technical strategy by making insightful contributions to the team’s priorities, approach and planning. They develop and introduce tools and practices that streamline the work of the team, and they mentor junior team members and participate in hiring. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA
US, WA, Seattle
Amazon is looking for a strategic, innovative science leader within the Global Talent and Compensation (GTMC) organization to lead an interdisciplinary team charged with developing data-driven solutions to model, automate, and inform high judgement decision making by bringing together science and technology in consumer grade internal talent products. GTMC delivers employee-focused experiences by providing scalable and responsive mechanisms for employees, as well as listening and signaling mechanisms for managers and leaders. They do this through intelligent, flexible, and extensible products and scalable data and science services. They set out to deliver a singular experience supporting multiple employee talent journeys (e.g., onboarding, evaluation, compensation, movement, promotion, exit), to generate and capture signals from product data, surface outliers, increase personalization, and improve the efficacy of “next best action” recommendations, for 1.6 million Amazonians around the world. In this role you will lead multiple research teams across the disciplines of Talent Management, Diversity Equity and Inclusion, and Compensation. You will interface with the most senior leaders at Amazon to develop and deliver on a strategic research roadmap that crosses all lines of Amazon businesses (e.g., Consumer, AWS, Devices, Advertising). This role will then partner with engineering and product management leader to deliver the outcomes of this research in production environments. Successful candidates will have an established background expertise in machine learning with some experience in applying this expertise to the fields of talent management, product management and/or software development. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
IN, KA, Bangalore
Are you interested in changing the Digital Reading Experience? We are from Kindle Books Team looking for a set of Scientists to take the reading experience in Kindle to next level with a set of innovations! We envision Kindle as the place where readers find the best manifestation of all written content optimized with features that enable them to get the most out of reading, and creators are able to realize their vision to customers quickly and at scale. Every time customers open their content, regardless of surface, they start or restart their reading in a familiar, useful and engaging place. We achieve this by building a strong foundation of core experiences and act as a force multiplier and partner for content creators (directly or indirectly) to easily innovate on top of Kindle's purpose built content experience stack in a simple and extensible way. We will achieve this by providing a best-in-class reading experience, unique content experiences, and remaining agile in meeting the evolving needs and preferences of our users. Our goal is to foster long-lasting reading habits and make us the preferred destination for enriching literary experiences. We are building a In The Book Science team and looking for Scientists, who are passionate about Reading and are willing to take Reading to the next level. Every Book is a complex structure with different entities, layout, format and semantics, with more than 17MM eBooks in our catalog. We are looking for experts in all domains like core NLP, Generative AI, CV and Deep Learning Techniques for unlocking capabilities like analysis, enhancement, curation, moderation, translation, transformation and generation in Books based on Content structure, features, Intent & Synthesis. Scientists will focus on Inside the book content and semantically learn the different entities to enhance the Reading experience overall (Kindle & beyond). They have an opportunity to influence in 2 major phases of life-cycle - Publishing (Creation of Books process) and Reading experience (building engaging features & representation in the book thereby driving reading engagement). Key job responsibilities - 5+ years of building machine learning models for business application experience - PhD, or Master's degree and 6+ years of applied research experience - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience programming in Java, C++, Python or related language - You have expertise in one of the applied science disciplines, such as machine learning, natural language processing, computer vision, Deep learning - You are able to use reasonable assumptions, data, and customer requirements to solve problems. - You initiate the design, development, execution, and implementation of smaller components with input and guidance from team members. - You work with SDEs to deliver solutions into production to benefit customers or an area of the business. - You assume responsibility for the code in your components. You write secure, stable, testable, maintainable code with minimal defects. - You understand basic data structures, algorithms, model evaluation techniques, performance, and optimality tradeoffs. - You follow engineering and scientific method best practices. You get your designs, models, and code reviewed. You test your code and models thoroughly - You participate in team design, scoping and prioritization discussions. You are able to map a business goal to a scientific problem and map business metrics to technical metrics. - You invent, refine and develop your solutions to ensure they are meeting customer needs and team goals. You keep current with research trends in your area of expertise and scrutinize your results. - Experience in mentoring junior scientists A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test solutions to improve our experience. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, model development and productionizing the same. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. We are open to hiring candidates to work out of one of the following locations: Banagalore, KA, IND | Bangalore, IND | Bangalore, KA, IND
IN, KA, Bangalore
Are you interested in changing the Digital Reading Experience? We are from Kindle Books Team looking for a set of Scientists to take the reading experience in Kindle to next level with a set of innovations! We envision Kindle as the place where readers find the best manifestation of all written content optimized with features that enable them to get the most out of reading, and creators are able to realize their vision to customers quickly and at scale. Every time customers open their content, regardless of surface, they start or restart their reading in a familiar, useful and engaging place. We achieve this by building a strong foundation of core experiences and act as a force multiplier and partner for content creators (directly or indirectly) to easily innovate on top of Kindle's purpose built content experience stack in a simple and extensible way. We will achieve this by providing a best-in-class reading experience, unique content experiences, and remaining agile in meeting the evolving needs and preferences of our users. Our goal is to foster long-lasting reading habits and make us the preferred destination for enriching literary experiences. We are building a In The Book Science team and looking for Scientists, who are passionate about Reading and are willing to take Reading to the next level. Every Book is a complex structure with different entities, layout, format and semantics, with more than 17MM eBooks in our catalog. We are looking for experts in all domains like core NLP, Generative AI, CV and Deep Learning Techniques for unlocking capabilities like analysis, enhancement, curation, moderation, translation, transformation and generation in Books based on Content structure, features, Intent & Synthesis. Scientists will focus on Inside the book content and semantically learn the different entities to enhance the Reading experience overall (Kindle & beyond). They have an opportunity to influence in 2 major phases of life-cycle - Publishing (Creation of Books process) and Reading experience (building engaging features & representation in the book thereby driving reading engagement). Key job responsibilities - 3+ years of building machine learning models for business application experience - PhD, or Master's degree and 2+ years of applied research experience - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience programming in Java, C++, Python or related language - You have expertise in one of the applied science disciplines, such as machine learning, natural language processing, computer vision, Deep learning - You are able to use reasonable assumptions, data, and customer requirements to solve problems. - You initiate the design, development, execution, and implementation of smaller components with input and guidance from team members. - You work with SDEs to deliver solutions into production to benefit customers or an area of the business. - You assume responsibility for the code in your components. You write secure, stable, testable, maintainable code with minimal defects. - You understand basic data structures, algorithms, model evaluation techniques, performance, and optimality tradeoffs. - You follow engineering and scientific method best practices. You get your designs, models, and code reviewed. You test your code and models thoroughly - You participate in team design, scoping and prioritization discussions. You are able to map a business goal to a scientific problem and map business metrics to technical metrics. - You invent, refine and develop your solutions to ensure they are meeting customer needs and team goals. You keep current with research trends in your area of expertise and scrutinize your results. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test solutions to improve our experience. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, model development and productionizing the same. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. We are open to hiring candidates to work out of one of the following locations: Bangalore, IND | Bangalore, KA, IND
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
IN, KA, Bengaluru
How to use the world’s richest collection of e-commerce data to improve payments experience for our customers? Amazon Payments Global Data Science team seeks a Senior Data Scientist for building analytical and scientific solutions that will address increasingly complex business questions in the Gift-Cards space. Amazon.com has a culture of data-driven decision-making and demands intelligence that is timely, accurate, and actionable. This team operates at WW level and provides a fast-paced environment where every day brings new challenges and opportunities. As a Senior Data Scientist in this team, you will be driving the Data Science/ML roadmap for business continuity & growth. You will develop statistical and machine learning models to solve for complex business problems in Gift-Cards space, design and run global experiments, and find new ways to optimize the customer experience. You will need to collaborate effectively with internal stakeholders, cross-functional teams to solve problems, create operational efficiencies, and deliver successfully against high organizational standards. You will explore GenAI use-cases within Gift-Cards space and also work on cross-disciplinary efforts with other scientists within Amazon. Key job responsibilities - You should be detail-oriented and must have an aptitude for solving unstructured and ambiguous problems. You should work in a self-directed environment, own tasks and drive them to completion - You should be passionate about working with huge data sets and be someone who loves to bring datasets together to answer business questions - You should demonstrate thorough technical expertise on feature engineering of massive datasets, exploratory data analysis, and model building using state-of-art ML algorithms - Random Forest, Gradient Boosting, SVM, Neural Nets, DL, Reinforcement Learning etc. You should be aware of automating feedback loops for algorithms in production - You should work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus areas - You should have excellent business and communication skills to be able to work with business owners to develop and define key business questions and build mechanisms that answer those questions We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
US, NY, New York
The Automated Reasoning Group in AWS Platform is looking for an Applied Scientist with experience in building scalable solver solutions that delight customers. You will be part of a world-class team building the next generation of automated reasoning tools and services. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. You will apply your knowledge to propose solutions, create software prototypes, and move prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You will use your strong verbal and written communication skills, are self-driven and own the delivery of high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. See https://aws.amazon.com/security/provable-security/ As an Applied Scientist in AWS Platform, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of product features from beginning to end. You will: - Define and implement new solver applications that are scalable and efficient approaches to difficult problems - Apply software engineering best practices to ensure a high standard of quality for all team deliverables - Work in an agile, startup-like development environment, where you are always working on the most important stuff - Deliver high-quality scientific artifacts - Work with the team to define new interfaces that lower the barrier of adoption for automated reasoning solvers - Work with the team to help drive business decisions The AWS Platform is the glue that holds the AWS ecosystem together. From identity features such as access management and sign on, cryptography, console, builder & developer tools, to projects like automating all of our contractual billing systems, AWS Platform is always innovating with the customer in mind. The AWS Platform team sustains over 750 million transactions per second. Learn and Be Curious. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Inclusion and Diversity. Our team is diverse! We drive towards an inclusive culture and work environment. We are intentional about attracting, developing, and retaining amazing talent from diverse backgrounds. Team members are active in Amazon’s 10+ affinity groups, sometimes known as employee resource groups, which bring employees together across businesses and locations around the world. These range from groups such as the Black Employee Network, Latinos at Amazon, Indigenous at Amazon, Families at Amazon, Amazon Women and Engineering, LGBTQ+, Warriors at Amazon (Military), Amazon People With Disabilities, and more. Key job responsibilities Work closely with internal and external users on defining and extending application domains. Tune solver performance for application-specific demands. Identify new opportunities for solver deployment. About the team Solver science is a talented team of scientists from around the world. Expertise areas include solver theory, performance, implementation, and applications. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
Amazon’s Automated Inventory Management (AIM) Planning Organization is looking for a Data Scientist to help invent the next generation of Amazon's Capacity and Constraint Management system - Automated Planning System (APS). APS will herald a a new era in Sales and Operations Planning (S&OP). APS emerges as a next-generation decision-making framework for Amazon's Worldwide (WW) fulfillment networks. In an industry first, APS seamlessly aligns Amazon's business controls by uniting cutting-edge supply and demand forecasts with a state-of-the-art coordination framework – respecting the distributed ownership of business logic and outcomes. As the centralized planning system, APS takes charge of coordinating all fulfillment, inventory, and operational decisions, maximizing WW Long Term Free Cash Flow (LTFCF) over a 1-year horizon The AIM team is part of the Supply Chain Optimization Technology (SCOT) Team within the Operations Organization. The charter of the SCOT team is to maximize Amazon’s return on our inventory investment in terms of Free Cash Flow and customer satisfaction. The planning organization within Amazon leads the S&OP, IPE and Capacity Planning functions. As a Data Scientist on the this team, you will build a deep understanding of Amazon's supply chain systems, lead innovation in our forecasting capabilities and build principled solutions to identify improvement opportunities in our supply chain using the latest machine learning techniques. You will also work with a team of Product Managers, Business Intelligence Engineers and Software Engineers to research and build accurate predictive models and deploy automated software solutions to provide insights to business leaders at the most senior levels throughout the company. You will build models that make our data more actionable and help us make complex business decisions at scale. To help describe some of our challenges, we created a short video about Supply Chain Optimization at Amazon - http://bit.ly/amazon-scot Key job responsibilities - Implement statistical and machine learning methods to solve complex business problems - Research new ways to improve predictive and explanatory models - Directly contribute to the design and development of automated prediction systems and ML infrastructure - Build models that can detect supply chain defects and explain variance to the optimal state - Collaborate with other researchers, software developers, and business leaders to define the scientific roadmap for this team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience. We are open to hiring candidates to work out of one of the following locations: Denver, CO, USA | Seattle, WA, USA
US, WA, Seattle
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Data Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with ambiguity. - Manage and drive the technical and analytical aspects of Advertiser segmentation; continually advance approach and methods. - Write code (Python, R, Scala, etc.) to analyze data and build statistical models to solve specific business problems - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support decision making. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Provide requirements to develop analytic capabilities, platforms, and pipelines. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose solution for the business problem you defined - Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. - Write code (python or another object-oriented language) for data analyzing and modeling algorithms. A day in the life The Senior Data Scientist will have the opportunity to use one of the world's largest eCommerce and advertising data sets to influence the evolution of our products. This role requires an individual with excellent business, communication, and technical skills, enabling collaboration with various functions, including product managers, software engineers, economists and data scientists, as well as senior leadership. This role will create and enhance performance monitoring reports to find insights that product and business team should focus on. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. This role will influence the direction of the business by leveraging our data to deliver insights that drive decisions and actions. The role will involve translating broad business problems into specific analytics projects, conducting deep quantitative analyses, and communicating results effectively. The role will help the organization identify, evaluate, and evangelize new techniques and tools to continue to improve our ability to deliver value to Amazon’s customers. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA