A screen grab from an NFL video shows Packers quarterback Aaron Rodgers preparing to pass the ball
In January, the National Football League announced its new QB passing score, which addressed the inconsistency across plays, games, weeks, and seasons found in previous scores. A method based on spliced binned-Pareto distributions, developed by Amazon researchers, led to the improved passing metric.

The science behind NFL Next Gen Stats’ new passing metric

Spliced binned-Pareto distributions are flexible enough to handle symmetric, asymmetric, and multimodal distributions, offering a more consistent metric.

When football fans evaluate a player’s performance, they measure the player’s execution of specific plays against an innate sense of the player’s potential. Trying to encode such judgments into machine learning models, however, has proved non-trivial.

Fans and commentators have criticized existing quarterback (QB) passing stats, such as Madden QB, the NFL passer rating, ESPN’s total quarterback rating (QBR), and the Pro Football Focus (PFF) grade, for being calibrated to obsolete data, being unrelated to winning, or scoring players anomalously — as when Kyler Murray received the low Madden QB21 rating of 77 despite being the 2019 Offensive Rookie of the Year.

Related content
Principal data scientist Elena Ehrlich uses her skills to help a wide variety of customers — including the National Football League.

On January 13, 2022, just before Super Bowl LVI, the NFL announced its new QB passing score, which seeks to improve on its predecessors’ limitations and to isolate a QB’s contributions from those of the team in a completely data-driven way.

The play level

A root problem with existing ratings is their inconsistency across plays, games, weeks, and seasons. We sought a metric that could account for play-specific dynamics and scale to different granularities with consistency.

We wanted to measure the QB’s decision making and pass execution given the game clock and the pressure he was under. For those conditions, we have directly measurable quantities, such as the defense’s movements. But how do we measure how “well” the QB performed? This is a point we address in the next section (“The model architecture”), but for now, we take yards gained as a measurable outcome. (This assumption will prove useful downstream.)

nflendzonesideline.png
An (x, y)-coordinate representation of the football field.

Since we said we wanted to take a data-driven approach, let’s look at exactly what the data is.

On each play, we receive updates every 100 milliseconds from radio frequency ID chips in the players’ shoulder pads, giving us all 22 players’ position in the (x, y)-coordinates of the field, along with their speed, acceleration, running direction, and body orientation, as shown in the image above.

This time series is of variable length, starting with the snap and ending when the QB releases the ball. For example, a QB throwing four seconds after the snap yields a time series of 40 timesteps, whereas a pass that takes just over two seconds yields a time series of 25 timesteps.

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

The figure below shows how the time series is represented. Each row corresponds to a single timestep and contains eight features (x-position, y-position, x-speed, y-speed, x-acceleration, y-acceleration, direction, and orientation) for each of 22 players, for a matrix of 176 columns and 40 rows. Features such as the number of defenders within a two-yard radius of the target receiver receive additional columns, but we eschew them here to focus on modeling technique.

nflplaytimeseriesmatrix.png
Matrix representation of the time series of a single play.

The collection of passing plays from the 2018-2020 seasons provided us with around 34,000 completions, 15,000 incompletes, and 1,200 interceptions, for more than 50,000 plays total. Feature preprocessing is a memory-intensive job, requiring two hours runtime on a ml.m5.m24xlarge instance. Modeling so large a number of time series, however, is a high-compute job.

For the model described in the upcoming section, the one-gpu p3.8xlarge instance incurred an eight-hour training time. While the NFL can afford two-hour preprocessing and eight-hour model fittings before the season commences, in live televised games, the inference returning a QB’s score for his play needs to be in real-time, like the 0.001 second per play of the following model.

The model architecture

To learn the temporal complexities within plays’ time series, we opted for a temporal convolutional network (TCN), a convolutional network adapted to handle inputs of different lengths and factor in long-range relationships between sequential inputs.

Since a play also has static attributes — such as down, score, and games remaining in the season — that influence players’ decisions and performance, we concatenate these with the TCN state and pass both to a multilayer perceptron to produce the final output, a probabilistic prediction of yards gained. To that, we compare the play’s actual yards gained.

nflplayertimeseriestcn.png
In our model, players’ time series are encoded by a temporal convolutional network (TCN), concatenated with a play’s static features, and fed to a multilayer perceptron.

Now, the network output is worth careful consideration. Naively, one might want to output a point prediction of the yards gained and train the network with an error loss function. But this fails to achieve the desired goal of measuring the outcome of a play relative to its potential.

An extra two yards gained under easier circumstances is not the same as two yards gained in more difficult circumstances, yet both would have a mean absolute error (MAE) of two yards. Instead, we opted for a distributional prediction, where the network’s outputs are parameters that specify a probability distribution.

We thought about which probability distribution function (PDF) would be most suitable. For certain plays, the PDF of yards gained would need to be asymmetrical: e.g., in a completed pass, if the QB throws to a receiver already running toward the end zone, positive yards gained are more likely than negative yards. Whereas for other plays, the PDF of yards gained would need to capture symmetry: on an interception, for example, the “negative” yards gained by the defender would balance against the possible positive yards gained by a completion.

There are even those plays for which the PDF would be bimodal: if the QB passes to a receiver with only one defender closing in, then the likelihood of yards gained lies either in the one- to two-yards range (if the receiver is tackled) or in the high-yardage range (if the receiver eludes the tackle), but not in-between. Other multi-model plays include when the QB may have to scramble for yards, like in the second play in this video.

yardsgainedpassescompletedgraphic.png
Yards gained on intercepted versus completed passes.

So we needed a distribution whose parameterization is flexible enough to accommodate multimodality, different symmetries, and light or heavy tails and whose locations and scale can vary with the clock time, current score, and other factors. We can’t meet these requirements with distributions like Gaussian or gamma, but we can meet them with the spliced binned-Pareto distribution.

The spliced binned-Pareto distribution

The spliced binned-Pareto (SBP) distribution arises from a classic result in extreme-value theory (EVT), which states that the distribution of extreme values (i.e., the tail) is almost independent of the base distribution of the data and, as shown below, can be estimated from the datapoints above the assumed upper bound (t) of the base distribution.

The second theorem of EVT states that any such distribution tail can be well-approximated by a generalized Pareto distribution (GPD) that has only two parameters, shape (x) and scale (b), and closed-form quantiles. The figure below shows the PDF of a GPD for x < 0, yielding a finite tail; x = 0, yielding an exponential tail; and x > 0, yielding a heavier-than-exponential tail.

valuesofdistribution.png
At left is a visualization of the observation that extreme values of a distribution (i.e., the tail) are almost independent of the base distribution and can be estimated from the datapoints above the assumed upper bound (t) of the base distribution. At right are probability distribution functions for generalized Pareto distributions with three different shapes.

Since we need multimodality and asymmetry for the base distribution, we modeled the base of the predictive distribution with a discrete binned distribution; as shown below, we discretize the real axis between two points into bins and predict the probability of the observation falling in each of these bins.

This yields a distribution robust to extreme values at training time because it is now a classification problem. The log-likelihood is not affected by the distance between the predicted mean and the observed point, as would be the case when using a Gaussian, Student’s t, or other parametric distribution. Moreover, the bins’ probability heights are independent of one another, so they can capture asymmetries or multiple modes in the distribution.

From the binned distribution, we delimit the lower tail by the fifth quantile and replace it with a weighted GPD. Analogously, we delimit the upper tail by the 95th quantile and replace it with another weighted GPD, to yield the SBP shown below.

binned and spliced binned graphic.png
At left is a binned distribution; at right is a spliced binned distribution, whose topmost and bottommost quantiles have been replaced with weighted generalized Pareto distributions.

The figure on the left above shows that the base distribution is indeed robust: the event represented by the extreme red dot will not bias the learned mean of the distribution but simply inflate the probability associated with the far-right bin.

However, this still leaves two problems: (i) although the red-dot event was observed to occur, the binned distribution would give it zero probability; conversely, (ii) the distribution would predict with certainty that extreme (i.e., great) plays do not occur. Because extreme yardage from deep-pass touchdowns, breakaway interceptions, etc., is rare, it is the adrenaline of the sport and exactly what we are most interested in describing probabilistically. The SBP figure above on the right graphically illustrates how the GPD tails can quantify how much less likely — i.e., harder — each incremental yard is.

The binned distribution and the GPDs are parameterized by the neural network we described above, which takes as input play matrices and outputs parameters: each of the bin probabilities, as well as x and b for each of the GPDs, which can be used to predict the probability-of-yards-gained value.

Establishing a gradient-based learning of heavy-tailed distributions has been a challenge in the ML community. Carreau and Bengio’s Hybrid Pareto model stitched GPD tails onto parametric distributions, but since the likelihood isn’t differentiable with respect to the threshold t, their model is supplemented with simulation and numerical approximations, foregoing time-varying applications. Other previous methods such as SPOT, DSPOT, and NN-SPOT, forego modeling the base and capture only the tails outside a fixed distance from the mean, which precludes higher-order non-stationarity and asymmetric tails.

While prior methods use a fixed threshold t to delimit tails, by modeling the base distribution, we obtain a time-varying threshold. Furthermore, training a single neural network to maximize the log-probability of the observed time step under the binned and GPD distributions yields a prediction that accounts for temporal variation in all moments of the distribution — the mean and variance as well as tail heaviness and scale, including asymmetric tails. The capabilities of different approaches are tabled below.

capabilitiesofdifferentapproaches.png
Capabilities of different approaches.

While we need a distributional prediction to grade a QB’s performance — to compare our model’s accuracy to other models’ — we need to use point predictions of yards gained. The table below compares the MAE of our method’s predictive median against that of a neural network with Gaussian output and against the point prediction of XGBoost, a decision-tree-based model.

meanaverageerror.png
Mean average error on yards gained for roughly 5,000 plays.

We have released Pytorch code for the spliced binned-Pareto model, along with a demo notebook.

The NGS passing score

Our model’s predictive PDF quantifies how likely each yardage gain is, for a league-average QB, given a specific play’s circumstances. Therefore, evaluating the actual yards gained in the cumulative distribution function (CDF) of that play’s SBP distribution yields a ranking between 0 and 1 of that QB’s performance relative to peer QBs.

This CDF ranking, under some further standardizations, becomes the QB passing score at the play level.

Aggregating scores over multiple plays yields game-, season-, or other split-level QB passing scores. For example, based on all targeted pass attempts in the ’21 season, Kyler Murray has a score of 87, ranking him ninth out of playoff QBs.

Under pressure, Murray's score jumps to 89; zooming in to passes between 2.5 and 4 seconds (in 2020 and 2021), Murray now scores a 99 in a five-way tie for the highest possible score. Other splits can also be contextualized with the NGS passing score, like deep passes, for example.

Finally, the tables below show that the NGS passing score correlates better with win percentages and playoff percentages than preceding passing metrics.

ngspassingscorespassingmetricsandwins.png
At left is the correlation of passing score with winning percentages and playoff percentages. At right is the comparison of passing score and other metrics.

Acknowledgments: Brad Gross

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques