Some highlights from the 2020 NFL season, quantified.

How AWS scientists help create the NFL’s Next Gen Stats

In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

At Super Bowl LV, Tom Brady won his seventh title, in his first year as quarterback for the Tampa Bay Buccaneers, whose defense held the high-octane offense of the defending champion Kansas City Chiefs to only nine points.

At key points, the broadcast was augmented by real-time evaluations using the NFL’s Next Gen Stats (NGS) powered by AWS. Several of those stats, such as pass completion probability or expected yards after catch, use machine learning models to analyze the data streaming in from radio frequency ID tags on players’ shoulder pads and on the ball.

Since 2017, Amazon Web Services (AWS) has been the NFL’s official technology provider in every phase of the development and deployment of Next Gen Stats. AWS stores the huge amount of data generated by tracking every player on every play in every NFL game — nearly 300 million data points per season; NFL software engineers use Amazon SageMaker to quickly build, train, and deploy the machine learning (ML) models behind their most sophisticated stats; and the NFL uses the business intelligence tool Amazon QuickSight to analyze and visualize the resulting statistical data.

“We wouldn’t have been able to make the strides we have as quickly as we have without AWS,” says Michael Schaefer, the director of product and analytics for the NFL’s Next Gen Stats. “SageMaker makes the development of ML models easy and intuitive — particularly for those who may not have deep familiarity with ML.”

“And where we’ve needed additional ML expertise,” Schaefer adds, “AWS’s data scientists have been an invaluable resource.”

Secondary variance

Take, for instance, the problem of defender ghosting, or predicting the trajectories of defensive backs after the ball leaves the quarterback’s hand. 

Defender ghosting is not itself a Next Gen Stat, but it’s an essential component of stats under development. For instance, defender ghosting can help estimate how a play would have evolved if the quarterback had targeted a different receiver: would the defensive backs have reached the receiver in time to stop a big gain? Defender ghosting can thus help evaluate a quarterback’s decision making.

QB decision making.png
Defender ghosting can help evaluate a quarterback’s decision making — by, for instance, predicting how a play would have developed if the quarterback had targeted a different receiver.
Credit: Gregory Trott/AP

Using SageMaker, the NFL’s Next Gen Stats team has constructed some sophisticated machine learning models: the completion probability model, for instance, factors in 10 on-field measurements — including the distance of the pass, distance between the quarterback and the nearest pass rushers, and distance between the receiver and the nearest defenders — and outputs the (league-average) likelihood of completing a pass under those conditions.

But predicting the trajectories of defensive backs — the cornerbacks and safeties who defend against downfield plays — is a particularly tough challenge. Defensive backs tend to cover more territory than other defensive players, and they also tend to make more radical adjustments in coverage as a play develops.

Safety breaking.png
Predicting on-field trajectories is particularly difficult in the case of defensive backs — like number 32, DeShon Elliott, in this image — who tend to cover more territory and make more radical trajectory adjustments than other defensive players.
Credit: Kenneth David Richmond

So to build a defender ghosting model, the NFL engineers joined forces with AWS senior scientist Lin Lee Cheong and her team at the Amazon Machine Learning Solutions Lab.

The first thing the AWS-NFL team did was to filter anomalies out of the training data. In 99.9% of cases, the NFL player-tracking system is accurate to within six inches, but like all radio-based technology, it’s susceptible to noise that can compromise accuracy.

“We're scientists. We’re not football experts,” Cheong says. “So we worked closely with the folks from NFL to understand the gameplay. Basic anomaly detection, as well as cleaning of the data, helped tremendously.”

The research team excised player-tracking data that violated a few cardinal rules. For instance, players’ trajectories should never take them off the field, and their speed should never exceed 12.5 yards per second (NFL players’ measured speeds top out at around 11 yards per second).

Where we’ve needed additional ML expertise, AWS’s data scientists have been an invaluable resource.
Michael Schaefer, director of product and analytics for the NFL’s Next Gen Stats

Next, the team winnowed down the “feature set” for the model. Features are the different types of input data on which a machine learning model bases its predictions. For every player on the field, the NFL tracking system provides location, direction of movement, and speed, which are all essential for predicting defensive backs’ trajectories. But any number of other features — down and distance, distance to the goal line, elapsed game time, length of the current drive, temperature — could, in principle, affect player performance.

The more input features a machine learning model has, however, the more difficult it is to tease out each feature’s correlation with the phenomenon the model is trying to predict. Absent a huge amount of training data, it’s usually preferable to keep the feature set small.

To predict trajectories, the AWS researchers planned to use a deep-learning model. But first they trained a simpler model, called a gradient boosting model, on all the available features. 

Gradient boosting models tend to be less accurate than neural networks, but they make it easy to see which input features make the largest contributions to the model output. The AWS-NFL team chose the features most important to the gradient boosting model, and just those features, as inputs to the deep-learning model.

That model proved quite accurate at predicting defensive backs’ trajectories. But the researchers’ job wasn’t done yet.

Quantifying the hypothetical

It was straightforward to calculate the model’s accuracy on plays that had actually taken place on NFL football fields: the researchers simply fed the model a sequence of three player position measurements and determined how well it predicted the next ten.

But one of the purposes of defender ghosting is to predict the outcomes of plays that didn’t happen, in order to assess players’ decision making. Absent the ground truth about the plays’ outcome, how do you gauge the model’s performance?

The researchers’ first recourse was to ask Schaefer to evaluate the predicted trajectories for hypothetical plays.

Next Gen Stats leaderboards

Read more about the NFL regular season's most remarkable performances, as measured by Next Gen Stats powered by AWS.

“He spent a week reviewing every trajectory our model predicted and pointed out all the ones that he thought were questionable, versus the ones that he thought were good,” Cheong says. “He also explained the thought process behind his evaluations, which was nuanced and complex. I thought, ‘Asking a director to spend a whole week reviewing our work after each model iteration is not scalable.’ I wanted to quantify his knowledge. So we created this composite metric that incorporates the know-how that a subject matter expert would use to evaluate trajectories.”

“By combining the NFL’s expertise in football with AWS’s ML experts, we’ve been able to develop and refine statistics for things never before quantified,” Schaefer says.

The core of Cheong and her colleagues’ composite metric is a measure of how quickly a defensive back’s trajectory diminishes his distance from the targeted receiver. Other factors include the distance the defender covers relative to the maximum distance he could have covered at top NFL speeds and whether the defender moves at superhuman speeds, which incurs a penalty in the scoring.

Defender ghosting.png
At left is the deep-learning model's projected trajectory for player 3, a defensive back, when player 6 is the targeted receiver; at right is the projected trajectory when player 7 is targeted.

When the AWS researchers apply their metric to actual NFL trajectories, they get an average score of -0.1036; the score is negative because it indicates that the defender is closing the distance between himself and the receiver. When they apply their metric to the trajectories their model predicts, they get an average score of -0.0825 — not quite as good, but in the same ballpark.

When, however, they distort the input data so that the starting orientation and velocity of 25% of defenders are random — that is, 25% of players are totally out of the play to begin with — the score goes up to a positive 0.0425. That’s a further indication that their metric captures information about the quality of the defensive backs’ play.

NFL offenses are incredibly complex, with many moving parts, and getting a statistical handle on them is much more difficult than, say, characterizing the one-on-one confrontations between a pitcher and hitter in baseball. All over the Internet, for instance, debate is raging about whether Tom Brady’s success in Tampa Bay proves that his former coach, Bill Belichick, gets too much credit for the New England Patriots’ nine Super Bowl trips in 17 years.

These types of arguments will probably go on forever; they’re part of the fun of sports fandom. But at the very least, Next Gen Stats powered by AWS should help make them more coherent.

Editor's note: The opening paragraphs of this article were revised to reflect the outcome of Super Bowl LV.

Related content

US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.