Some highlights from the 2020 NFL season, quantified.

How AWS scientists help create the NFL’s Next Gen Stats

In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

At Super Bowl LV, Tom Brady won his seventh title, in his first year as quarterback for the Tampa Bay Buccaneers, whose defense held the high-octane offense of the defending champion Kansas City Chiefs to only nine points.

At key points, the broadcast was augmented by real-time evaluations using the NFL’s Next Gen Stats (NGS) powered by AWS. Several of those stats, such as pass completion probability or expected yards after catch, use machine learning models to analyze the data streaming in from radio frequency ID tags on players’ shoulder pads and on the ball.

Since 2017, Amazon Web Services (AWS) has been the NFL’s official technology provider in every phase of the development and deployment of Next Gen Stats. AWS stores the huge amount of data generated by tracking every player on every play in every NFL game — nearly 300 million data points per season; NFL software engineers use Amazon SageMaker to quickly build, train, and deploy the machine learning (ML) models behind their most sophisticated stats; and the NFL uses the business intelligence tool Amazon QuickSight to analyze and visualize the resulting statistical data.

“We wouldn’t have been able to make the strides we have as quickly as we have without AWS,” says Michael Schaefer, the director of product and analytics for the NFL’s Next Gen Stats. “SageMaker makes the development of ML models easy and intuitive — particularly for those who may not have deep familiarity with ML.”

“And where we’ve needed additional ML expertise,” Schaefer adds, “AWS’s data scientists have been an invaluable resource.”

Secondary variance

Take, for instance, the problem of defender ghosting, or predicting the trajectories of defensive backs after the ball leaves the quarterback’s hand. 

Defender ghosting is not itself a Next Gen Stat, but it’s an essential component of stats under development. For instance, defender ghosting can help estimate how a play would have evolved if the quarterback had targeted a different receiver: would the defensive backs have reached the receiver in time to stop a big gain? Defender ghosting can thus help evaluate a quarterback’s decision making.

QB decision making.png
Defender ghosting can help evaluate a quarterback’s decision making — by, for instance, predicting how a play would have developed if the quarterback had targeted a different receiver.
Credit: Gregory Trott/AP

Using SageMaker, the NFL’s Next Gen Stats team has constructed some sophisticated machine learning models: the completion probability model, for instance, factors in 10 on-field measurements — including the distance of the pass, distance between the quarterback and the nearest pass rushers, and distance between the receiver and the nearest defenders — and outputs the (league-average) likelihood of completing a pass under those conditions.

But predicting the trajectories of defensive backs — the cornerbacks and safeties who defend against downfield plays — is a particularly tough challenge. Defensive backs tend to cover more territory than other defensive players, and they also tend to make more radical adjustments in coverage as a play develops.

Safety breaking.png
Predicting on-field trajectories is particularly difficult in the case of defensive backs — like number 32, DeShon Elliott, in this image — who tend to cover more territory and make more radical trajectory adjustments than other defensive players.
Credit: Kenneth David Richmond

So to build a defender ghosting model, the NFL engineers joined forces with AWS senior scientist Lin Lee Cheong and her team at the Amazon Machine Learning Solutions Lab.

The first thing the AWS-NFL team did was to filter anomalies out of the training data. In 99.9% of cases, the NFL player-tracking system is accurate to within six inches, but like all radio-based technology, it’s susceptible to noise that can compromise accuracy.

“We're scientists. We’re not football experts,” Cheong says. “So we worked closely with the folks from NFL to understand the gameplay. Basic anomaly detection, as well as cleaning of the data, helped tremendously.”

The research team excised player-tracking data that violated a few cardinal rules. For instance, players’ trajectories should never take them off the field, and their speed should never exceed 12.5 yards per second (NFL players’ measured speeds top out at around 11 yards per second).

Where we’ve needed additional ML expertise, AWS’s data scientists have been an invaluable resource.
Michael Schaefer, director of product and analytics for the NFL’s Next Gen Stats

Next, the team winnowed down the “feature set” for the model. Features are the different types of input data on which a machine learning model bases its predictions. For every player on the field, the NFL tracking system provides location, direction of movement, and speed, which are all essential for predicting defensive backs’ trajectories. But any number of other features — down and distance, distance to the goal line, elapsed game time, length of the current drive, temperature — could, in principle, affect player performance.

The more input features a machine learning model has, however, the more difficult it is to tease out each feature’s correlation with the phenomenon the model is trying to predict. Absent a huge amount of training data, it’s usually preferable to keep the feature set small.

To predict trajectories, the AWS researchers planned to use a deep-learning model. But first they trained a simpler model, called a gradient boosting model, on all the available features. 

Gradient boosting models tend to be less accurate than neural networks, but they make it easy to see which input features make the largest contributions to the model output. The AWS-NFL team chose the features most important to the gradient boosting model, and just those features, as inputs to the deep-learning model.

That model proved quite accurate at predicting defensive backs’ trajectories. But the researchers’ job wasn’t done yet.

Quantifying the hypothetical

It was straightforward to calculate the model’s accuracy on plays that had actually taken place on NFL football fields: the researchers simply fed the model a sequence of three player position measurements and determined how well it predicted the next ten.

But one of the purposes of defender ghosting is to predict the outcomes of plays that didn’t happen, in order to assess players’ decision making. Absent the ground truth about the plays’ outcome, how do you gauge the model’s performance?

The researchers’ first recourse was to ask Schaefer to evaluate the predicted trajectories for hypothetical plays.

Next Gen Stats leaderboards

Read more about the NFL regular season's most remarkable performances, as measured by Next Gen Stats powered by AWS.

“He spent a week reviewing every trajectory our model predicted and pointed out all the ones that he thought were questionable, versus the ones that he thought were good,” Cheong says. “He also explained the thought process behind his evaluations, which was nuanced and complex. I thought, ‘Asking a director to spend a whole week reviewing our work after each model iteration is not scalable.’ I wanted to quantify his knowledge. So we created this composite metric that incorporates the know-how that a subject matter expert would use to evaluate trajectories.”

“By combining the NFL’s expertise in football with AWS’s ML experts, we’ve been able to develop and refine statistics for things never before quantified,” Schaefer says.

The core of Cheong and her colleagues’ composite metric is a measure of how quickly a defensive back’s trajectory diminishes his distance from the targeted receiver. Other factors include the distance the defender covers relative to the maximum distance he could have covered at top NFL speeds and whether the defender moves at superhuman speeds, which incurs a penalty in the scoring.

Defender ghosting.png
At left is the deep-learning model's projected trajectory for player 3, a defensive back, when player 6 is the targeted receiver; at right is the projected trajectory when player 7 is targeted.

When the AWS researchers apply their metric to actual NFL trajectories, they get an average score of -0.1036; the score is negative because it indicates that the defender is closing the distance between himself and the receiver. When they apply their metric to the trajectories their model predicts, they get an average score of -0.0825 — not quite as good, but in the same ballpark.

When, however, they distort the input data so that the starting orientation and velocity of 25% of defenders are random — that is, 25% of players are totally out of the play to begin with — the score goes up to a positive 0.0425. That’s a further indication that their metric captures information about the quality of the defensive backs’ play.

NFL offenses are incredibly complex, with many moving parts, and getting a statistical handle on them is much more difficult than, say, characterizing the one-on-one confrontations between a pitcher and hitter in baseball. All over the Internet, for instance, debate is raging about whether Tom Brady’s success in Tampa Bay proves that his former coach, Bill Belichick, gets too much credit for the New England Patriots’ nine Super Bowl trips in 17 years.

These types of arguments will probably go on forever; they’re part of the fun of sports fandom. But at the very least, Next Gen Stats powered by AWS should help make them more coherent.

Editor's note: The opening paragraphs of this article were revised to reflect the outcome of Super Bowl LV.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA
ES, M, Madrid
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Madrid, ESP | Madrid, M, ESP
US, TX, Austin
The role is available Arlington, Virginia (may consider New York, NY, Los Angeles, CA, or Toronto, Canada). Calling all inventors to work on exciting new opportunities in Sponsored Products. Amazon is building a world class advertising business and defining and delivering a collection of self-service performance advertising products that drive discovery and sales of merchandise. Our products are strategically important to our Retail and Marketplace businesses, driving long-term growth. Sponsored Products (SP) helps merchants, retail vendors, and brand owners grows incremental sales of their products sold on Amazon through native advertising. SP achieves this by using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. We are a highly motivated, collaborative and fun-loving group with an entrepreneurial spirit and bias for action. You will join a newly-founded team with a broad mandate to experiment and innovate, which gives us the flexibility to explore and apply scientific techniques to novel product problems. You will have the satisfaction of seeing your work improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills, work with Generative AI, and be a science leader in an environment that thrives on creativity, experimentation, and product innovation. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA
GB, London
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis Basic Qualifications -Masters in Computer Science, Machine Learning, Robotics or equivalent with a focus on Computer Vision. -2+ years of experience of building machine learning models for business application -Broad knowledge of fundamentals and state of the art in computer vision and machine learning -Strong coding skills in two or more programming languages such as Python or C/C++ -Knowledge of fundamentals in optimization, supervised and reinforcement learning -Excellent problem-solving ability Preferred Qualifications -PhD and 4+ years of industry or academic applied research experience applying Computer Vision techniques and developing Computer vision algorithms -Depth and breadth in state-of-the-art computer vision and machine learning technologies and experience designing and building computer vision solutions -Industry experience in sensor systems and the development of production computer vision and machine learning applications built to use them -Experience developing software interfacing to AWS services -Excellent written and verbal communication skills with the ability to present complex technical information in a clear and concise manner to a variety of audiences -Ability to work on a diverse team or with a diverse range of coworkers -Experience in publishing at major Computer Vision, ML or Robotics conferences or Journals (CVPR, ICCV, ECCV, NeurIPS, ICML, IJCV, ICRA, IROS, RSS,...) We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Seattle
Want to work in a start-up environment with the resources of Amazon behind you? Do you want to have direct and immediate impact on millions of customers every day? If you are a self-starter, passionate about machine learning, deep learning, big data systems, enjoy designing and implementing new features and machine learned models, and intrigued by ambiguous problems, look no further. Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of Kindles, tablets, and mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. About Our Team: Our team is responsible for building a new advertising product for non-endemic advertisers. We are tasked with taking this start-up offering to market, with the goal of empowering over one million non-endemic advertisers to independently plan and execute campaigns. “Non-endemic” brands offer products and services that are not sold/available in Amazon’s retail marketplace, including restaurants, hotels, airlines, insurance, telecom, and automobiles. We are embarking on a multi-year vision to democratize display advertising for non-endemic advertisers at self-service scale. This will open up Amazon Ads to self-service non-endemic demand— whether they sell on the Amazon store or not— to activate Amazon Ads first-party audiences built from shopping and streaming signals and access unique ad inventory to help grow their business. Open to hire in NYC or Seattle. Key job responsibilities - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Train and fine-tune neural models including transformers and language models. - Recruit Applied Scientists to the team and provide mentorship. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
LU, Luxembourg
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX