The science behind Astro's graceful, responsive motion

Predictive planning, uncertainty modeling, uniquely constrained trajectory optimization, and multiscale planning help customers trust Astro.

With Astro, we are building something that was a distant dream just a few years ago: a mobile robot that can move with grace and confidence, can interact with human users, and is available at a consumer-friendly price.

Related content
“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

Since Astro is a consumer robot, its sensor field of view and onboard computational capabilities are highly constrained. They are orders of magnitude less powerful than those of some vehicles used in industrial applications and academic research. Delivering state-of-the-art quality of motion under such constraints is challenging and necessitates innovation in the underlying science and technology. But that is what makes the problem exciting to researchers and to the broader robotics community.

This blog post describes the innovations in algorithm and software design that enable Astro to move gracefully in the real world. We talk about how predictive planning, handling uncertainties, and robust and fast optimization are at the heart of Astro’s motion planning. We also give an overview of Astro’s planning system and how each layer handles specific spatial and temporal aspects of the motion-planning problem.

Computation, latency, and smoothness of motion

For motion planning, one of the fundamental consequences of having limited computational capacity is a large sensing-to-actuation latency: it can take substantial time to process sensor data and to plan robot movements, which in turn has significant implications for smoothness of motion.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

As an example, let’s assume it takes 500 milliseconds to process raw sensor data, to detect and track obstacles, and to plan the robot’s movements. That means that a robot moving at one meter per second would have moved 50 centimeters before the sensor data could have any influence on its movement! This can have a huge impact on not only safety but also smoothness of motion, as delayed corrections usually need to be larger, causing jerky movements.

Astro tries to explicitly compensate for this with predictive planning.

Predictive planning

Astro not only tries to predict movements of external objects (e.g., people) but also estimates where it will be and what the world will look like at the end of the current planning cycle, fully accounting for the latencies in the sensing, mapping, and planning pipeline. Astro’s plans are based on fast-forwarded states: they’re not based just on the latest sensor data but on what Astro believes the world will look like in the near future, when the plan will actually take effect.

If the predictions are reasonably good, this kind of predictive planning can critically reduce the impact of unavoidable latencies, and Astro’s observed smoothness of motion depends in large part on our predictive planning framework. However, that framework requires careful handling of uncertainties, as no prediction is ever going to be perfect.

Handling uncertainties

For motion planning, uncertainty can directly translate to risk of collision. Many existing academic methods either treat risk as a special type of constraint — e.g., allowing all motion if the risk is below some preset threshold (so-called chance constraints) — or rely on heuristic risk-reward tradeoffs (typically via a constant weighted sum of costs). These approaches tend to work well in cases where risk is low but do not generalize well to more challenging real-world scenarios.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

Our approach relies on a unique formulation where the robot’s motivation to move toward the goal gets weighed dynamically via the perceived level of uncertainty. The objective function is constructed so that Astro evaluates uncertainty-adjusted progress for each candidate motion, which allows it to focus on getting to the goal when risk is low but focus on evasion when risk is high.

It is worth noting that in our formulation, there is no discrete transition between high-risk and low-risk modes, as the transition is handled via a unified, continuous cost formulation. Such absence of abrupt transitions is important for smoothness of motion.

When you see Astro automatically modulating its speed smoothly as it gets near obstacles and/or avoids an oncoming pedestrian, our probabilistic cost formulation is at play.

Trajectory optimization

To plan a trajectory (a time series of positions, velocities, and accelerations), Astro considers multiple candidate trajectories and chooses the best one in each planning cycle. Our formulation allows Astro to plan 10 times a second, evaluating a few hundred trajectory candidates in each instance. Each time, Astro finds the trajectory that will result in the optimal behavior considering safety, smoothness of motion, and progress toward the goal.

Theoretically, there are always infinitely many trajectories for a planner to choose from, so exhaustively searching for the best trajectory would take forever.

But not all trajectory candidates are useful or desirable. In fact, we observe that most trajectories are jerky, and some of them are not even realizable on the physical device. Restricting the candidates to smooth and realizable trajectories can drastically reduce the size of the search space without reducing the robot’s ability to move.

robot_trajectory_distribution.png
For efficient search, Astro’s trajectory optimization relies on a compact space of smooth and realizable trajectories. Astro is depicted as a magenta rectangle in the middle, and the colored curves are 600 trajectories randomly sampled from the trajectory space.

Unlike other approaches, which reduce the number of choices to a discrete set (e.g., a state lattice), our formulation is continuous; it thus improves smoothness as well as safety, via the fine-grained control it enables. Our special trajectory parameterization also guarantees that all of the trajectories in the space are physically realizable.

The search space still retains enough diversity of trajectories to include quick stops and hard turns; these may become necessary when a dynamic obstacle suddenly enters Astro’s field of view, when there is a small or difficult-to-see obstacle that is detected too late, or simply when Astro is asked to switch to a new task as quickly as possible.

Related content
A new opt-in feature for Echo Show and Astro provides more-personalized content and experiences for customers who choose to enroll.

We also pay necessary attention to detail in the implementation, such as multistage optimization and warm-starting to avoid local minima and enable faster convergence. All of these contribute to the smoothness of motion.

Whole-body trajectory planning

Astro’s planning system controls more than just two wheels on a robot body. It also moves Astro’s screen, which is used not only for visualizing content but also for communicating motion intent (looking where to go) and for active perception (looking at the person Astro is following using the camera on the display). The communication of intent via body language and active perception help enable more robust human-robot interactions.

We won’t go into much into the detail here, but we would like to mention that the predictive planning framework also helps here. Knowing what the robot should do with its body, and also knowing the predicted location of target objects in the near future, can often make the planning of the screen movements trivial.

planning-a-trajectory-screen-borders.png
A snapshot of Astro’s continuous trajectory planning. Colored curves represent trajectory candidates within the next three seconds. (For clarity, only 10% of all trajectories evaluated are shown here. Green is better; red is worse.) Blue arrows indicate longer-range path guidance. Astro (magenta box) is turning its screen (smaller box in front) to the left, indicating that it is planning to turn slightly to the left.

The planning system: temporal and spatial decomposition

So far, we’ve discussed how Astro plans its local trajectories. In this section, we give an overview of Astro’s planning system (of which the trajectory planner is one layer) and describe how the whole system works cooperatively. In our design, we decompose the motion-planning problem into three planning layers with varying degree of spatial and temporal coverage. The entire system is built to work together to generate the smooth and graceful motion we desire.

planning layers.png
Astro’s planning system is composed of the following three layers: the global path-planning layer, the local trajectory-planning layer, and the reactive control layer. From global to reactive, each layer has progressively less spatial coverage (and hence less data per input) but runs at a higher frequency.

Global path planning

The global path planner is responsible for finding a path from the current robot position to a goal specified by the user, considering historically observed navigability information (e.g., door opened/closed). This is the only layer in the system that has access to the entire global map, and it is expected to have a larger latency due to the amount of data it processes.

Related content
The professor of collective intelligence and robotics at the University of Cambridge earned a 2019 Amazon Research Award for “Learning Explicit Communication for Multi-Robot Path Planning”.

Because of that latency, the global planner is run on demand. Once it finds a path in the current global map, we rely on downstream layers to make Astro move smoothly along the path and to more quickly respond to higher-frequency changes in the environment.

Local trajectory planning

The local trajectory planner is responsible for finding a safe and smooth trajectory that will make good progress along the path provided by the global path planner. Unlike global planning, which has to process the entire map, it considers a fixed and limited amount of data (a six-by-six-meter local map). This allows us to guarantee that it will maintain a constant replanning rate of 10 Hz, with a three-second planning horizon.

This is a layer where we can really address smoothness of motion, as it considers in detail the exact shapes and dynamics of the robot and various semantic entities in the world.

Related content
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

As can be seen above, Astro’s planned trajectories do not coincide exactly with a given global path. This is because we intentionally treat the global path as a guidance: the local trajectory planner has a lot of flexibility in determining how to progress along the path, considering the dynamics of the robot and the world. This flexibility not only makes the job easier for the local trajectory planner but also reduces the burden on the global planner, which can focus on finding an approximate guidance with loose guarantees rather than an explicit and smooth path.

Reactive control

Finally, we have a reactive control layer. It deals with a much smaller map (a two-by-two-meter local map), which is updated with much lower latency. At this layer, we perform our final check on the planned trajectory, to guard against surprises that the local trajectory planner cannot address without incurring latency.

Related content
Navigation, perception, simulation — three key components to giving Amazon Scout true independence.

This layer is responsible for handling noise and small disturbances at the state estimation level and also for quickly slowing down or sometimes stopping the robot in response to more immediate sensor readings. Not only does this low-latency slowdown reduce Astro’s time of reaction to surprise obstacles, but it also gives the local mapper and trajectory planner extra time to map obstacles and plan alternate trajectories.

The path forward

With Astro, we believe we have made considerable progress in defining a planning system that is lightweight enough to fit within the budget of a consumer robot but powerful enough to handle a wide variety of dynamic, ever-changing home environments. The intelligent, graceful, and responsive motion delivered by our motion-planning algorithms is essential for customers to trust a home robot like Astro.

But we are most certainly not done. We are actively working on improving our mathematical formulations and engineering implementations, as well as developing learning-based approaches that have shown great promise in recent academic research. As Astro navigates more home environments, we expect to learn much more about the real-world problems that we need to solve to make our planning system more robust and, ultimately, more useful to our customers.

Research areas

Related content

US, MD, Annapolis Junction
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) methods. We build models for text, image, video, audio, and multi-modal use cases, using traditional or generative approaches to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position may require local travel up to 25% It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Amazon Web Services (AWS) Professional Services (ProServe) is looking for Data Scientists who like helping U.S. Federal agencies implement innovative cloud computing solutions and solve technical problems using state-of-the-art language models in the cloud. AWS ProServe engages in a wide variety of projects for customers and partners, providing collective experience from across the AWS customer base and are obsessed about strong success for the Customer. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based upon customer needs. At AWS, we're hiring experienced data scientists with a background in NLP, generative AI, and document processing to help our customers understand, plan, and implement best practices around leveraging these technologies within their AWS cloud environments. Our consultants deliver proof-of-concept projects, reusable artifacts, reference architectures, and lead implementation projects to assist organizations in harnessing the power of their data and unlocking the potential of advanced NLP and AI capabilities. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have deep expertise in NLP/NLU, generative AI, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected be a US Citizen and obtain and maintain a security clearance at the TS/SCI with polygraph level. Upon start, the selected candidate will be sponsored for a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities In this role, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge generative AI solutions to address real-world challenges. - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Provide expertise and guidance in generative AI and document processing infrastructure, design, implementation, and optimization. - Maintain domain knowledge and expertise in generative AI, NLP, and NLU. - Architect and build large-scale solutions. - Build technical solutions that are secure, maintainable, scalable, reliable, performant, and cost-effective. - Identify and prepare metrics and reports for the internal team and for customers to delineate the value of their solution to the customer. - Identify, mitigate and communicate risks related to solution and service constraints by making technical trade-offs. - Participate in growing their team’s skills and help mentor internal and customer team members. - Provide guidance on the people, organizational, security and compliance aspects of AI/ML transformations for the customer. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Amazon's AGI Web & Knowledge Services group is seeking a passionate, talented, and inventive Applied Scientist to lead the development of industry-leading structured Information retrieval systems. As part of our cutting-edge AGI-SIR team, you will play a pivotal role in developing efficient AI solutions for Knowledge Graphs, Graph Search and Question Answering Systems. In this role, your work will focus on creating scalable and efficient AI-driven technologies that push the boundaries of information retrieval. You will work on a broad range of problems, from low-level data processing to the development of novel retrieval models, leveraging state-of-the-art machine learning methods. Key job responsibilities - Lead the development of advanced algorithms for knowledge graphs, graph search and question answering systems, guiding the team in solving complex problems and setting technical direction. - Design models that address customer needs, making informed trade-offs to balance accuracy, efficiency, and user experience. - Collaborate with engineering teams to implement successful models into scalable, reliable Amazon production systems. - Present results to technical and business audiences, ensuring clarity, statistical rigor, and relevance to business goals. - Establish and uphold high scientific and engineering standards, driving best practices across the team. - Promote a culture of experimentation and continuous learning within Amazon’s applied science community.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech and retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations re-imagine buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes, unlocking our potential worldwide. Amazon Business Supplier Experience Science team is looking for Sr. Applied Scientist to excel at product and service pricing, selection, forecast and optimization. Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting, selection additions and operations optimization. Amazon Business is a fast growing business sector. We need leaders who can think big and drive big vision into a reality. Please come to work with us if you are result driven, think big, and want to have fun and make a history. You will build the science models and the supporting structures needed to analyze, dive deep, and innovate the pricing strategies. You will also have the opportunity to present findings to cross functional team partners to drive improvements. You will work closely with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to solve challenging problems. You need be comfortable using intellect, curiosity and technical ability to develop innovative solutions to business problems. You need learn different aspects of the business and understand how to apply science and analytics to solve high impact business problems. You will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. The ideal candidate will have leadership skills, proven ability to develop, enhance, automate, and manage science models from end to end. The ideal candidate will have data mining and modeling skills and will be comfortable facilitating idea creation and working from concept through to execution. The ideal candidate must have the ability to manage medium-scale automation and modeling projects, identify requirements and build methodology and tools that are mathematically grounded but also explainable operationally, apply technical skills allowing the models to adapt to changing attributes. Key job responsibilities • Contribute to supplier operations strategy development based on science models and data analysis • Develop models to measure long term impact of seller behaviors • Collaborate with product and engineering teams both within and outside of AB to launch selection and operations systems based on science and data. • Use optimization, statistical, machine learning and analytical techniques to create scalable solutions for business problems. • Design, development and evaluation of highly innovative models for forecast, optimization and experimentation. • Work and collaborate effectively with product managers and software engineering teams to build algorithms and models and integrate successful models and algorithms in production systems. • Contribute to Amazon's Intellectual Property through patents and internal and external publications A day in the life The scientist will develop, enhance, automate, and manage science models from end to end. The scientist will also have the opportunity to present findings to cross functional team partners to drive improvements. The scientist will work with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to build analytical and science models. The scientist will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. About the team Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting and selection additions.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Research Scientist, to lead the development of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Research Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - Drive applied science projects in machine learning end-to-end: from ideation over prototyping to launch. For example, starting from deep scientific thinking about new ways to support customers’ journeys through discovery, you analyze how customers discover, review and purchase Private Brands to innovate marketing and merchandising strategies. - Propose viable ideas to advance models and algorithms, with supporting argument, experiment, and eventually preliminary results. - Invent ways to overcome technical limitations and enable new forms of analyses to drive key technical and business decisions. - Present results, reports, and data insights to both technical and business leadership. - Constructively critique peer research and mentor junior scientists and engineers. - Innovate and contribute to Amazon’s science community and external research communities.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Bellevue
We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
LU, Luxembourg
Are you interested in building state-of-the-art machine learning systems for the most complex, and fastest growing, transportation network in the world? If so, Amazon has the most exciting, and never-before-seen, challenges at this scale (including those in sustainability, e.g. how to reach net zero carbon by 2040). Amazon’s transportation systems get millions of packages to customers worldwide faster and cheaper while providing world class customer experience – from online checkout, to shipment planning, fulfillment, and delivery. Our software systems include services that use tens of thousands of signals every second to make business decisions impacting billions of dollars a year, that integrate with a network of small and large carriers worldwide, that manage business rules for millions of unique products, and that improve experience of over hundreds of millions of online shoppers. As part of this team you will focus on the development and research of machine learning solutions and algorithms for core planning systems, as well as for other applications within Amazon Transportation Services, and impact the future of the Amazon delivery network. Current research and areas of work within our team include machine learning forecast, uncertainty quantification, planning systems, model interpretability, graph neural nets, among others. We are looking for a Machine Learning Scientist with a strong academic background in the areas of machine learning, time series forecasting, and/or optimization. At Amazon, we strive to continue being the most customer-centric company on earth. To stay there and continue improving, we need exceptionally talented, bright, and driven people. If you'd like to help us build the place to find and buy anything online, and deliver in the most efficient and greenest way possible, this is your chance to make history. About the team The EU ATS Science and Technology (SnT) team owns scalable algorithms, models and systems that improve customer experience in middle-mile. We work backwards from Amazon's customers aiming to make transportation faster, cheaper, safer, more reliable and ecologically sustainable.