The science behind Astro's graceful, responsive motion

Predictive planning, uncertainty modeling, uniquely constrained trajectory optimization, and multiscale planning help customers trust Astro.

With Astro, we are building something that was a distant dream just a few years ago: a mobile robot that can move with grace and confidence, can interact with human users, and is available at a consumer-friendly price.

Related content
“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

Since Astro is a consumer robot, its sensor field of view and onboard computational capabilities are highly constrained. They are orders of magnitude less powerful than those of some vehicles used in industrial applications and academic research. Delivering state-of-the-art quality of motion under such constraints is challenging and necessitates innovation in the underlying science and technology. But that is what makes the problem exciting to researchers and to the broader robotics community.

This blog post describes the innovations in algorithm and software design that enable Astro to move gracefully in the real world. We talk about how predictive planning, handling uncertainties, and robust and fast optimization are at the heart of Astro’s motion planning. We also give an overview of Astro’s planning system and how each layer handles specific spatial and temporal aspects of the motion-planning problem.

Computation, latency, and smoothness of motion

For motion planning, one of the fundamental consequences of having limited computational capacity is a large sensing-to-actuation latency: it can take substantial time to process sensor data and to plan robot movements, which in turn has significant implications for smoothness of motion.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

As an example, let’s assume it takes 500 milliseconds to process raw sensor data, to detect and track obstacles, and to plan the robot’s movements. That means that a robot moving at one meter per second would have moved 50 centimeters before the sensor data could have any influence on its movement! This can have a huge impact on not only safety but also smoothness of motion, as delayed corrections usually need to be larger, causing jerky movements.

Astro tries to explicitly compensate for this with predictive planning.

Predictive planning

Astro not only tries to predict movements of external objects (e.g., people) but also estimates where it will be and what the world will look like at the end of the current planning cycle, fully accounting for the latencies in the sensing, mapping, and planning pipeline. Astro’s plans are based on fast-forwarded states: they’re not based just on the latest sensor data but on what Astro believes the world will look like in the near future, when the plan will actually take effect.

If the predictions are reasonably good, this kind of predictive planning can critically reduce the impact of unavoidable latencies, and Astro’s observed smoothness of motion depends in large part on our predictive planning framework. However, that framework requires careful handling of uncertainties, as no prediction is ever going to be perfect.

Handling uncertainties

For motion planning, uncertainty can directly translate to risk of collision. Many existing academic methods either treat risk as a special type of constraint — e.g., allowing all motion if the risk is below some preset threshold (so-called chance constraints) — or rely on heuristic risk-reward tradeoffs (typically via a constant weighted sum of costs). These approaches tend to work well in cases where risk is low but do not generalize well to more challenging real-world scenarios.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

Our approach relies on a unique formulation where the robot’s motivation to move toward the goal gets weighed dynamically via the perceived level of uncertainty. The objective function is constructed so that Astro evaluates uncertainty-adjusted progress for each candidate motion, which allows it to focus on getting to the goal when risk is low but focus on evasion when risk is high.

It is worth noting that in our formulation, there is no discrete transition between high-risk and low-risk modes, as the transition is handled via a unified, continuous cost formulation. Such absence of abrupt transitions is important for smoothness of motion.

When you see Astro automatically modulating its speed smoothly as it gets near obstacles and/or avoids an oncoming pedestrian, our probabilistic cost formulation is at play.

Trajectory optimization

To plan a trajectory (a time series of positions, velocities, and accelerations), Astro considers multiple candidate trajectories and chooses the best one in each planning cycle. Our formulation allows Astro to plan 10 times a second, evaluating a few hundred trajectory candidates in each instance. Each time, Astro finds the trajectory that will result in the optimal behavior considering safety, smoothness of motion, and progress toward the goal.

Theoretically, there are always infinitely many trajectories for a planner to choose from, so exhaustively searching for the best trajectory would take forever.

But not all trajectory candidates are useful or desirable. In fact, we observe that most trajectories are jerky, and some of them are not even realizable on the physical device. Restricting the candidates to smooth and realizable trajectories can drastically reduce the size of the search space without reducing the robot’s ability to move.

robot_trajectory_distribution.png
For efficient search, Astro’s trajectory optimization relies on a compact space of smooth and realizable trajectories. Astro is depicted as a magenta rectangle in the middle, and the colored curves are 600 trajectories randomly sampled from the trajectory space.

Unlike other approaches, which reduce the number of choices to a discrete set (e.g., a state lattice), our formulation is continuous; it thus improves smoothness as well as safety, via the fine-grained control it enables. Our special trajectory parameterization also guarantees that all of the trajectories in the space are physically realizable.

The search space still retains enough diversity of trajectories to include quick stops and hard turns; these may become necessary when a dynamic obstacle suddenly enters Astro’s field of view, when there is a small or difficult-to-see obstacle that is detected too late, or simply when Astro is asked to switch to a new task as quickly as possible.

Related content
A new opt-in feature for Echo Show and Astro provides more-personalized content and experiences for customers who choose to enroll.

We also pay necessary attention to detail in the implementation, such as multistage optimization and warm-starting to avoid local minima and enable faster convergence. All of these contribute to the smoothness of motion.

Whole-body trajectory planning

Astro’s planning system controls more than just two wheels on a robot body. It also moves Astro’s screen, which is used not only for visualizing content but also for communicating motion intent (looking where to go) and for active perception (looking at the person Astro is following using the camera on the display). The communication of intent via body language and active perception help enable more robust human-robot interactions.

We won’t go into much into the detail here, but we would like to mention that the predictive planning framework also helps here. Knowing what the robot should do with its body, and also knowing the predicted location of target objects in the near future, can often make the planning of the screen movements trivial.

planning-a-trajectory-screen-borders.png
A snapshot of Astro’s continuous trajectory planning. Colored curves represent trajectory candidates within the next three seconds. (For clarity, only 10% of all trajectories evaluated are shown here. Green is better; red is worse.) Blue arrows indicate longer-range path guidance. Astro (magenta box) is turning its screen (smaller box in front) to the left, indicating that it is planning to turn slightly to the left.

The planning system: temporal and spatial decomposition

So far, we’ve discussed how Astro plans its local trajectories. In this section, we give an overview of Astro’s planning system (of which the trajectory planner is one layer) and describe how the whole system works cooperatively. In our design, we decompose the motion-planning problem into three planning layers with varying degree of spatial and temporal coverage. The entire system is built to work together to generate the smooth and graceful motion we desire.

planning layers.png
Astro’s planning system is composed of the following three layers: the global path-planning layer, the local trajectory-planning layer, and the reactive control layer. From global to reactive, each layer has progressively less spatial coverage (and hence less data per input) but runs at a higher frequency.

Global path planning

The global path planner is responsible for finding a path from the current robot position to a goal specified by the user, considering historically observed navigability information (e.g., door opened/closed). This is the only layer in the system that has access to the entire global map, and it is expected to have a larger latency due to the amount of data it processes.

Related content
The professor of collective intelligence and robotics at the University of Cambridge earned a 2019 Amazon Research Award for “Learning Explicit Communication for Multi-Robot Path Planning”.

Because of that latency, the global planner is run on demand. Once it finds a path in the current global map, we rely on downstream layers to make Astro move smoothly along the path and to more quickly respond to higher-frequency changes in the environment.

Local trajectory planning

The local trajectory planner is responsible for finding a safe and smooth trajectory that will make good progress along the path provided by the global path planner. Unlike global planning, which has to process the entire map, it considers a fixed and limited amount of data (a six-by-six-meter local map). This allows us to guarantee that it will maintain a constant replanning rate of 10 Hz, with a three-second planning horizon.

This is a layer where we can really address smoothness of motion, as it considers in detail the exact shapes and dynamics of the robot and various semantic entities in the world.

Related content
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

As can be seen above, Astro’s planned trajectories do not coincide exactly with a given global path. This is because we intentionally treat the global path as a guidance: the local trajectory planner has a lot of flexibility in determining how to progress along the path, considering the dynamics of the robot and the world. This flexibility not only makes the job easier for the local trajectory planner but also reduces the burden on the global planner, which can focus on finding an approximate guidance with loose guarantees rather than an explicit and smooth path.

Reactive control

Finally, we have a reactive control layer. It deals with a much smaller map (a two-by-two-meter local map), which is updated with much lower latency. At this layer, we perform our final check on the planned trajectory, to guard against surprises that the local trajectory planner cannot address without incurring latency.

Related content
Navigation, perception, simulation — three key components to giving Amazon Scout true independence.

This layer is responsible for handling noise and small disturbances at the state estimation level and also for quickly slowing down or sometimes stopping the robot in response to more immediate sensor readings. Not only does this low-latency slowdown reduce Astro’s time of reaction to surprise obstacles, but it also gives the local mapper and trajectory planner extra time to map obstacles and plan alternate trajectories.

The path forward

With Astro, we believe we have made considerable progress in defining a planning system that is lightweight enough to fit within the budget of a consumer robot but powerful enough to handle a wide variety of dynamic, ever-changing home environments. The intelligent, graceful, and responsive motion delivered by our motion-planning algorithms is essential for customers to trust a home robot like Astro.

But we are most certainly not done. We are actively working on improving our mathematical formulations and engineering implementations, as well as developing learning-based approaches that have shown great promise in recent academic research. As Astro navigates more home environments, we expect to learn much more about the real-world problems that we need to solve to make our planning system more robust and, ultimately, more useful to our customers.

Research areas

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
IN, TS, Hyderabad
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Hyderabad office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows from Originals and Exclusive content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at any time and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on We are seeking an exceptional Applied Scientist to join our Prime Video Sports personalization team in Israel. Our team is dedicated to developing state-of-the-art science to personalize the customer experience and help customers seamlessly find any live event in our selection. You will have the opportunity to work on innovative, large-scale projects that push the boundaries of what's possible in sports content delivery and engagement. Your expertise will be crucial in tackling complex challenges such as information retrieval, sequential modeling, realtime model optimizations, utilizing Large Language Models (LLMs), and building state-of-the-art complex recommender systems. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Personalization, Information Retrieval, and Recommender Systems, or general ML to develop new algorithms and end-to-end solutions. As part of our team of applied scientists and software development engineers, you will be responsible for researching, designing, developing, and deploying algorithms into production pipelines. Your role will involve working with cutting-edge technologies in recommender systems and search. You'll also tackle unique challenges like temporal information retrieval to improve real-time sports content recommendations. As a technologist, you will drive the publication of original work in top-tier conferences in Machine Learning and Recommender Systems. We expect you to thrive in ambiguous situations, demonstrating outstanding analytical abilities and comfort in collaborating with cross-functional teams and systems. The ideal candidate is a self-starter with the ability to learn and adapt quickly in our fast-paced environment. About the team We are the Prime Video Sports team. In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis majors like Roland-Garros and English Premier League to list a few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.