Amazon Scout making a delivery in a residential neighborhood.
Amazon Scout delivery robots are slowly shuttling around four areas in the United States: Snohomish County, Wash.; Irvine, Calif.; Franklin, Tenn.; and Atlanta, Georgia. Amazon scientists are working to help the fully autonomous delivery robots traverse a nearly infinite range of variables.

How Amazon scientists are helping the Scout delivery device find a path to success

Navigation, perception, simulation — three key components to giving Amazon Scout true independence.

Introduced in January 2019, Amazon’s Scout delivery robot now is slowly shuttling around four areas in the United States: Snohomish County, Wash.; Irvine, Calif.; Franklin, Tenn.; and Atlanta, Georgia. The electrically powered, cooler-sized delivery system is designed to find its way along sidewalks and navigate around pets, people, and a wide variety of other things it encounters while delivering packages to customers’ homes.

To deploy a fleet of fully autonomous delivery robots, Scout must manage changing weather conditions, variations in terrain, unexpected obstacles — a nearly infinite range of variables.

To better understand how Amazon Scout is working to meet those challenges, Amazon Science recently spoke with three scientists who are currently — or were formerly — professors in the robotics field, and now are working on critical components of the service. They are focusing on giving Amazon Scout the tools it needs to navigate to customers by helping the delivery robot see and understand what’s going on around it and giving it an accurate picture of the physical world.

Navigation: Where should Scout go?

Paul Reverdy, an applied scientist, is a relative newcomer to the Scout project, joining Amazon in July 2020. His background in helping automated systems such as robots work with people is extensive, including earning his PhD from Princeton University, his postdoctoral fellowship at the University of Pennsylvania, and his tenure as an assistant professor in aerospace and mechanical engineering at the University of Arizona.

Paul Reverdy
Paul Reverdy
Lamont W. Abrams Jr.

As a key contributor to Scout’s ability to find its way around a neighborhood, Reverdy has a big task. Traditional methods, such as relying on GPS signals, are not adequate to guide Scout, he says. They simply don’t offer enough detail nor are they available all the time.

“Scout has to make a lot of decisions,” Reverdy said. “Some are pretty high level, such as deciding whether it should cross a street or not. Then there are very discrete decisions it must make, such as ‘Can I get through the gap between the hedge and the trash can?’”

That’s where navigation plays a role. Rather than sending a device into territory it doesn’t fully comprehend, Reverdy is creating detailed maps of the world Scout travels within to make sure Scout has the information it needs to plan and react to the world.

“There might be bumps on a sidewalk, or it might be raining, and the sidewalk looks different,” says Reverdy. “Or it could be a higher-level decision: ‘OK, the sidewalk is blocked. Do I try to maneuver into the street? Do I try to navigate around the obstacle?’”

Scout also needs to figure these things out with a modest sensor array. “We have real-world constraints,” says Reverdy. “We need to be intelligent with our sensor data to make sure we perform.”

For Reverdy, the work with Amazon has been an interesting contrast to academia. “The thing that’s really different is working on large-scale software problems,” he says. “In academia you’re often working on your own. At Amazon, things are much more collaborative. Plus, the scale of problems we can look at is substantially larger.”

Perception: Giving Scout a view of the world

Another scientist playing a key role in giving Scout true independence is Hamed Pirsiavash, an Amazon visiting scientist, an assistant professor at the University of Maryland Baltimore County who works on computer vision and machine learning. His job is to help Scout see the world around it and understand what it is seeing or sensing.

Hamed Pirsiavash
Hamed Pirsiavash

“Scout needs to understand what a drivable area is, or what it means when it comes to a stoplight,” says Pirsiavash. “The goal is similar to self-driving cars, with the main difference that Scout mostly travels slowly on sidewalks.”

In some ways, that makes it easier for Scout to understand its environment. In other ways, the task of traversing neighborhood sidewalks is more difficult. Roads are somewhat more predictable — after all, they’re designed for cars. But sidewalks have more varied uses. “It’s a different environment from a street” says Pirsiavash, “as we’re likely to encounter a variety of obstacles, from lawn and garden tools and skateboard ramps, to outdoor furniture and toys.”

What makes Scout possible today are the big advances in computer vision and machine learning that have occurred in the past decade. “The field is advancing every day,” says Pirsiavash. “With large-scale data sets and vast computation now available, we’re able to build a robot that understands the world in a much more sophisticated way.”

For Pirsiavash, Amazon offers a chance to work on real-world, applied-science problems together with more theoretical academic challenges.  “Scout has to manage some challenging situations,” Pirsiavash says. “We’ve had cases where a Scout has encountered a basketball hoop that fell across the sidewalk. And of course, people always put their trash bins in different places, and Scout must understand what is happening.”

“I’m really enjoying the work. It’s great to see the results of our work in the field and see how it can benefit people.”

Simulation: Building a virtual world for Scout

Airlines train pilots in simulators so they can learn in a digital jetliner before taking the helm of a real aircraft. Giving Scout the tools it needs to succeed is no different: Detailed simulators give Scout the chance to test its skills in a digital environment.

Benjamin Kunsberg calls it a “digital sandbox” for the robot. “We can give Scout a world with tremendous detail, down to individual blades of grass,” he says.

Benjamin Kunsberg
Benjamin Kunsberg

Kunsberg is an Amazon applied scientist who joined the Scout team in 2019, following four years as an assistant professor of applied mathematics at Brown University in Rhode Island. Previously, he earned his PhD in applied mathematics from Yale University, and a master’s degree in mathematics from Stanford University.

Creating a digital world is a challenging task. It must be accurate enough for Scout to really get a sense of the world, and even small shifts in daylight can have an impact on that. “Small differences not taken into account can make a big difference,” says Kunsberg. “There’s dust in the air, or sun glare.”

In a way, it’s a problem from the movie, “The Matrix”. There, computers designed a virtual world. But how did they know if they got it right? “For some objects, you have no idea how accurate your digital simulation is,” says Kunsberg. “You have to work very hard to come up with benchmarks.”

In some cases, the simulation includes digital scenery similar to a video game. Engineers can add October leaves to a sidewalk, for instance, so Scout can learn that things have changed compared to April. In other cases, the Scout team uses actual photography for training, with team members then outlining and identifying key features to guide the robot’s decisions. That’s slow, but accurate, and can be combined with fully digital simulation to create an accurate view of the world.

Amazon Scout could one day be traversing your neighborhood.

Once that world is designed, Scout needs to be trained to understand it. That’s accomplished in part using neural networks — computer systems that recognize relationships among data through a process that, in part, mimics the human brain an approach not available 10 years ago.

Kunsberg has enjoyed the jump from academia to industry.

“This project involves a lot of ideas I had already been thinking about.

“I’ve been really impressed by the graphical engineers and software developers on our team. There’s really no equal in academia.”

What’s next for Scout?

It’s still Day One for Amazon Scout. The team is excited about the positive feedback from customers and results from field tests. The team expects to apply its learnings to keep moving forward on this new delivery system and on Amazon’s path to net zero carbon by 2040.

You can find out more about the team and available jobs here.

Research areas

Related content

US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Senior Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. #everydaybetter Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the Health AI team at HST (Health Store and Technology). The team consists of exceptional ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health.
US, WA, Seattle
Join us at the cutting edge of Amazon's sustainability initiatives to work on environmental and social advancements to support Amazon's long term worldwide sustainability strategy. At Amazon, we're working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, and driven people. The Worldwide Sustainability (WWS) organization capitalizes on Amazon’s scale & speed to build a more resilient and sustainable company. We manage our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation (SSI) is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise. We use this expertise and skills to identify, develop and evaluate the science and innovations necessary for Amazon, customers and partners to meet their long-term sustainability goals and commitments. We’re seeking a Sr. Manager, Applied Scientist for Sustainability and Climate AI to drive technical strategy and innovation for our long-term sustainability and climate commitments through AI & ML. You will serve as the strategic technical advisor to science, emerging tech, and climate pledge partners operating at the Director, VPs, and SVP level. You will set the next generation modeling standards for the team and tackle the most immature/complex modeling problems following the latest sustainability/climate sciences. Staying hyper current with emergent sustainability/climate science and machine learning trends, you'll be trusted to translate recommendations to leadership and be the voice of our interpretation. You will nurture a continuous delivery culture to embed informed, science-based decision-making into existing mechanisms, such as decarbonization strategies, ESG compliance, and risk management. You will also have the opportunity to collaborate with the Climate Pledge team to define strategies based on emergent science/tech trends and influence investment strategy. As a leader on this team, you'll play a key role in worldwide sustainability organizational planning, hiring, mentorship and leadership development. If you see yourself as a thought leader and innovator at the intersection of climate science and tech, we’d like to connect with you. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Does the idea of setting the strategic direction for the product ontology that supports Amazon stores sound exciting? Would it be your dream job to generate, curate and manage product knowledge highlighting all of Amazon's mammoth selection and services from door knobs to books to dishwasher installation to things that haven’t even been invented yet? Do you want to help use data to make finding and understanding Amazon's product space easier? The vision of the Product Knowledge Ontology Team is to provide a standardized, semantically rich, easily discoverable, extensible, and universally applicable body of product knowledge that can be consistently utilized across customer shopping experiences, selling partner listing experiences, and product catalog enrichment. As a Principal Research Scientist you will lead the design and build world-class, intuitive, and comprehensive taxonomy and ontology solutions to optimize product discovery and classification. Key job responsibilities - Work with Product Knowledge leadership team to set strategic direction for ontology platform development - Design and create knowledge models that leverage cutting-edge technology to meet the needs of Amazon customers - Influence across a broad set of internal and external team stakeholders (engineers, designers, program and business leaders) while delivering impactful results for both manufacturers and customers - Evangelize the powerful solutions that ontologies can to offer to solve common and complex business problems - Use Generative Artificial Intelligence (generative AI) models to solve complex schema management use cases at scale - Analyze knowledge performance metrics, customer behavior data and industry trends to make intelligent data-driven decisions on how we can evolve the ontology to provide the best data for customers and internal users - Own business requirements related to knowledge management tools, metrics and processes - Identify and execute the right trade-offs for internal and external customers and systems operating on the ontology - Support a broad community of knowledge builders across Amazon by participating in knowledge sharing and mentorship
US, CA, Santa Clara
As a Senior Scientist at AWS AI/ML leading the Personalization and Privacy AI teams, you will have deep subject matter expertise in the areas of recommender systems, personalization, generative AI and privacy. You will provide thought leadership on and lead strategic efforts in the personalization of models to be used by customer applications across a wide range of customer use cases. Particular new directions regarding personalizing the output of LLM and their applications will be at the forefront. You will work with product, science and engineering teams to deliver short- and long-term personalization solutions that scale to large number of builders developing Generative AI applications on AWS. You will lead and work with multiple teams of scientists and engineers to translate business and functional requirements into concrete deliverables. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for personalization, privacy and customization for generative AI. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, VA, Arlington
AWS Industry Products (AIP) is an AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for Research Scientists who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations verticals. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems Using your in-depth expertise in machine learning and generative AI and software engineering, you will take the lead on tactical and strategic initiatives to deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon. Extensive knowledge of both state-of-the-art and emerging AI methods and technologies is expected. Hands-on knowledge of generative AI, foundation models and commitment to learn and grow in this field are expected. Prior research or industry experience in Sustainability would be a plus. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and models to automate workflows, processes for browser automation, developers and operations teams. As part of this, we are developing services and inference engine for these automation agents; and techniques for reasoning, planning, and modeling workflows. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Develop cutting edge multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop cutting edge automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities Key job responsibilities As an Applied Scientist II on this team you will: * Lead complex and ambiguous projects to deliver bidding recommendation products to advertisers. * Build machine learning models and utilize data analysis to deliver scalable solutions to business problems. * Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. * Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. * Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new predictive learning approaches for the sponsored products business. * Write production code to bring models into production.
US, NY, New York
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. We are seeking a technical leader for our Supply Science team. This team is within the Sponsored Product team, and works on complex engineering, optimization, econometric, and user-experience problems in order to deliver relevant product ads on Amazon search and detail pages world-wide. The team operates with the dual objective of enhancing the experience of Amazon shoppers and enabling the monetization of our online and mobile page properties. Our work spans ML and Data science across predictive modeling, reinforcement learning (Bandits), adaptive experimentation, causal inference, data engineering. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Applied Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Applied Scientist on this team you will: --Act as the technical leader in Machine Learning and drive full life-cycle Machine Learning projects. --Lead technical efforts within this team and across other teams. --Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. --Run A/B experiments, gather data, and perform statistical analysis. --Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. --Work closely with software engineers to assist in productionizing your ML models. --Research new machine learning approaches. --Recruit Applied Scientists to the team and act as a mentor to other scientists on the team. A day in the life The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, including multilingual support, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop data simulation approaches mimicking real-world interactions with a focus on the speech modality. You'll acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations in data representation, model pre-training/fine-tuning on simulated and real-world datasets, and responsible AI practices will directly impact customers through new AI products and services.
US, WA, Seattle
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, including multilingual support, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop data simulation approaches mimicking real-world interactions with a focus on the speech modality. You'll acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations in data representation, model pre-training/fine-tuning on simulated and real-world datasets, and responsible AI practices will directly impact customers through new AI products and services.