NeurIPS: Why causal-representation learning may be the future of AI

Francesco Locatello on the four NeurIPS papers he coauthored this year, which largely concern generalization to out-of-distribution test data.

In a conversation right before the 2021 Conference on Neural Information Processing Systems (NeurIPS), Amazon vice president and distinguished scientist Bernhard Schölkopf — according to Google Scholar, the most highly cited researcher in the field of causal inference — said that the next frontier in artificial-intelligence research was causal-representation learning.

Where existing approaches to causal inference use machine learning to discover causal relationships between variables — say, the latencies of various interrelated services on a website — causal-representation learning learns the variables themselves. “These kinds of causal representations will also go toward reasoning, which we will ultimately need if we want to move away from this pure pattern recognition view of intelligence,” Schölkopf said.

Francesco.jpg
Senior applied scientist Francesco Locatello.

Francesco Locatello, a senior applied scientist with Amazon Web Services, leads Amazon’s research on causal-representation learning, and he’s a coauthor on four papers at this year’s NeurIPS.

Assaying out-of-distribution generalization in transfer learning” concerns one of the most compelling applications of causal inference in machine learning: generalizing models trained on data with a particular probability distribution to real-world data with a different distribution.

“When you do standard machine learning, you are drawing independent samples from some probability distribution, and then you train a model that's going to generalize to the same distribution,” Locatello explains. “You're describing a physical system using a single probability distribution. Causal models are different because they model every possible state that this physical system can take as a result of an intervention. So instead of having a single probability distribution, you have a set of distributions.

Related content
Amazon Science hosts a conversation with Amazon Scholars Michael I. Jordan and Michael Kearns and Amazon distinguished scientist Bernhard Schölkopf.

“What does it mean that your test data comes from a different distribution? You have the same underlying physical system; the causal structure is the same. It's just a new intervention you have not seen. Your test distribution is different than the training, but now it's not an arbitrary distribution. It’s well posed because it's entailed by the causal structure, and it's a meaningful distribution that may happen in the real world.”

In “Assaying out-of-distribution generalization in transfer learning”, Locatello explains, “what we do is to collect a huge variety of datasets that are constructed for or adapted to this scenario where you have a very narrow data set that you can use for transfer learning, and then you have a wide variety of test data that is all out of distribution. We look at the different approaches that have been studied in the literature and compare them on fair ground.”

Although none of the approaches canvassed in the paper explicitly considers causality, Locatello says, “causal approaches should eventually be able to do better on this benchmark, and this will allow us to evaluate our progress. That's why we built it.”

Neural circuits

Today’s neural networks do representation learning as a matter of course: their inputs are usually raw data, and they learn during training which aspects of the data are most useful for the task at hand. As Schölkopf pointed out in conversation last year, causal-representation learning would simply bring causal machine learning models up to speed with conventional models.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“The important thing to realize is that most machine learning applications don't come structured as a set of well-defined random variables that fully align with the underlying functioning of a physical system,” Locatello explains. “We still want to model these systems in terms of abstract variables, but nobody gives these variables to us. So you may want to learn them in order to be able to perform causal inference.”

Among his and his colleagues’ NeurIPS papers, Locatello says, the one that comes closest to the topic of causal-representation learning is “Neural attentive circuits”. Causal models typically represent causal relationships using graphs, and a neural network, too, can be thought of as an enormous graph. Locatello and his collaborators are trying to make that analogy explicit, by training a neural network to mimic the structure of a causal network.

Neural attentive circuits.png
Visualizations of graph structures learned by neural attentive circuits, from "Neural attentive circuits".

“This is a follow-up on a paper we had last year in NeurIPS,” Locatello says. “The inspiration was to design architectures that behave more similarly to causal models, where you have the noise variables — that's the data — and then you have variables that are being manipulated by functions, and they simply communicate with each other in a graph. And this graph can change dynamically when a distribution changes, for example, because of an intervention.

“In the first paper, we developed an architecture that behaves exactly like that: you have a set of neural functions that can be composed on the fly, depending on the data and the problem. The functions, the routing, and the stitching of the functions are learned. Everything is learned. But it turns out that dynamic stitching is not very scalable.

“In this new work, we essentially compiled the stitching of the functions so that for each sample it's decided beforehand — where it's going to go through the network, how the functions are going to be composed. Instead of doing it on the fly one layer at a time, you decide for the overall forward pass. And we demonstrated that these sparse learned connectivity patterns improve out-of-distribution generalization.”

Success stories

Locatello’s other NeurIPS papers are on more-conventional machine learning topics. “Self supervised amodal video object segmentation” considers the problem of reconstructing the silhouette of an occluded object, which is crucial to robotics applications, including autonomous cars.

Locatello 16_9.png
Segmentations of partially occluded objects, from "Self supervised amodal video object segmentation".

“We exploit the principle that you can build information about an object over time in a video,” Locatello explains. “Perhaps in past frames you've seen parts of the objects that are now occluded. If you can remember that you've seen this object before, and this was its segmentation mask, you can build up your segmentation over time.”

The final paper, “Are two heads the same as one? Identifying disparate treatment in fair neural networks”, considers models whose training objectives are explicitly designed to minimize bias across different types of inputs. Locatello and his colleagues find that frequently, such models — purely through training, without any human intervention — develop two “heads”: that is, they learn two different pathways through the neural network, one for inputs in the sensitive class, and one for all other inputs.

Related content
Amazon ICML paper proposes information-theoretic measurement of quantitative causal contribution.

The researchers argue that, since the network is learning two heads, anyway, it might as well be designed with a two-headed architecture: that would improve performance while meeting the same fairness standard. But this approach hasn’t been adopted, as it runs afoul of rules prohibiting disparate treatment of different groups. In this case, however, disparate treatment could be the best way to ensure fair treatment.

These last two papers are only obliquely related to causality. But, Locatello says, “causal-representation learning is a very young field. So we are trying to identify success stories, and I think these papers are going in that direction.”

“It's clear that causality will have a role in future machine learning,” he adds, “because there are a lot of open problems in machine learning that can at least be partially addressed when you start looking at causal models. And my goal really is to realize the benefits of causal models in mainstream machine learning applications. That's why some of these works are not necessarily about causality, but closer to machine learning. Because ultimately, that's our goal.”

Learn more about Amazon at NeurIPS 2022

For more on the Amazon research being presented at this year's NeurIPS, see our quick guide to Amazon's NeurIPS 2022 papers.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000