NeurIPS: Why causal-representation learning may be the future of AI

Francesco Locatello on the four NeurIPS papers he coauthored this year, which largely concern generalization to out-of-distribution test data.

In a conversation right before the 2021 Conference on Neural Information Processing Systems (NeurIPS), Amazon vice president and distinguished scientist Bernhard Schölkopf — according to Google Scholar, the most highly cited researcher in the field of causal inference — said that the next frontier in artificial-intelligence research was causal-representation learning.

Where existing approaches to causal inference use machine learning to discover causal relationships between variables — say, the latencies of various interrelated services on a website — causal-representation learning learns the variables themselves. “These kinds of causal representations will also go toward reasoning, which we will ultimately need if we want to move away from this pure pattern recognition view of intelligence,” Schölkopf said.

Francesco.jpg
Senior applied scientist Francesco Locatello.

Francesco Locatello, a senior applied scientist with Amazon Web Services, leads Amazon’s research on causal-representation learning, and he’s a coauthor on four papers at this year’s NeurIPS.

Assaying out-of-distribution generalization in transfer learning” concerns one of the most compelling applications of causal inference in machine learning: generalizing models trained on data with a particular probability distribution to real-world data with a different distribution.

“When you do standard machine learning, you are drawing independent samples from some probability distribution, and then you train a model that's going to generalize to the same distribution,” Locatello explains. “You're describing a physical system using a single probability distribution. Causal models are different because they model every possible state that this physical system can take as a result of an intervention. So instead of having a single probability distribution, you have a set of distributions.

Related content
Amazon Science hosts a conversation with Amazon Scholars Michael I. Jordan and Michael Kearns and Amazon distinguished scientist Bernhard Schölkopf.

“What does it mean that your test data comes from a different distribution? You have the same underlying physical system; the causal structure is the same. It's just a new intervention you have not seen. Your test distribution is different than the training, but now it's not an arbitrary distribution. It’s well posed because it's entailed by the causal structure, and it's a meaningful distribution that may happen in the real world.”

In “Assaying out-of-distribution generalization in transfer learning”, Locatello explains, “what we do is to collect a huge variety of datasets that are constructed for or adapted to this scenario where you have a very narrow data set that you can use for transfer learning, and then you have a wide variety of test data that is all out of distribution. We look at the different approaches that have been studied in the literature and compare them on fair ground.”

Although none of the approaches canvassed in the paper explicitly considers causality, Locatello says, “causal approaches should eventually be able to do better on this benchmark, and this will allow us to evaluate our progress. That's why we built it.”

Neural circuits

Today’s neural networks do representation learning as a matter of course: their inputs are usually raw data, and they learn during training which aspects of the data are most useful for the task at hand. As Schölkopf pointed out in conversation last year, causal-representation learning would simply bring causal machine learning models up to speed with conventional models.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“The important thing to realize is that most machine learning applications don't come structured as a set of well-defined random variables that fully align with the underlying functioning of a physical system,” Locatello explains. “We still want to model these systems in terms of abstract variables, but nobody gives these variables to us. So you may want to learn them in order to be able to perform causal inference.”

Among his and his colleagues’ NeurIPS papers, Locatello says, the one that comes closest to the topic of causal-representation learning is “Neural attentive circuits”. Causal models typically represent causal relationships using graphs, and a neural network, too, can be thought of as an enormous graph. Locatello and his collaborators are trying to make that analogy explicit, by training a neural network to mimic the structure of a causal network.

Neural attentive circuits.png
Visualizations of graph structures learned by neural attentive circuits, from "Neural attentive circuits".

“This is a follow-up on a paper we had last year in NeurIPS,” Locatello says. “The inspiration was to design architectures that behave more similarly to causal models, where you have the noise variables — that's the data — and then you have variables that are being manipulated by functions, and they simply communicate with each other in a graph. And this graph can change dynamically when a distribution changes, for example, because of an intervention.

“In the first paper, we developed an architecture that behaves exactly like that: you have a set of neural functions that can be composed on the fly, depending on the data and the problem. The functions, the routing, and the stitching of the functions are learned. Everything is learned. But it turns out that dynamic stitching is not very scalable.

“In this new work, we essentially compiled the stitching of the functions so that for each sample it's decided beforehand — where it's going to go through the network, how the functions are going to be composed. Instead of doing it on the fly one layer at a time, you decide for the overall forward pass. And we demonstrated that these sparse learned connectivity patterns improve out-of-distribution generalization.”

Success stories

Locatello’s other NeurIPS papers are on more-conventional machine learning topics. “Self supervised amodal video object segmentation” considers the problem of reconstructing the silhouette of an occluded object, which is crucial to robotics applications, including autonomous cars.

Locatello 16_9.png
Segmentations of partially occluded objects, from "Self supervised amodal video object segmentation".

“We exploit the principle that you can build information about an object over time in a video,” Locatello explains. “Perhaps in past frames you've seen parts of the objects that are now occluded. If you can remember that you've seen this object before, and this was its segmentation mask, you can build up your segmentation over time.”

The final paper, “Are two heads the same as one? Identifying disparate treatment in fair neural networks”, considers models whose training objectives are explicitly designed to minimize bias across different types of inputs. Locatello and his colleagues find that frequently, such models — purely through training, without any human intervention — develop two “heads”: that is, they learn two different pathways through the neural network, one for inputs in the sensitive class, and one for all other inputs.

Related content
Amazon ICML paper proposes information-theoretic measurement of quantitative causal contribution.

The researchers argue that, since the network is learning two heads, anyway, it might as well be designed with a two-headed architecture: that would improve performance while meeting the same fairness standard. But this approach hasn’t been adopted, as it runs afoul of rules prohibiting disparate treatment of different groups. In this case, however, disparate treatment could be the best way to ensure fair treatment.

These last two papers are only obliquely related to causality. But, Locatello says, “causal-representation learning is a very young field. So we are trying to identify success stories, and I think these papers are going in that direction.”

“It's clear that causality will have a role in future machine learning,” he adds, “because there are a lot of open problems in machine learning that can at least be partially addressed when you start looking at causal models. And my goal really is to realize the benefits of causal models in mainstream machine learning applications. That's why some of these works are not necessarily about causality, but closer to machine learning. Because ultimately, that's our goal.”

Learn more about Amazon at NeurIPS 2022

For more on the Amazon research being presented at this year's NeurIPS, see our quick guide to Amazon's NeurIPS 2022 papers.

Related content

IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.