Amazon at ACL: How to teach machines to reason

Amazon’s Dan Roth on a hot new research topic — that he’s been studying for more than 25 years.

As a senior area chair at this year’s meeting of the Association for Computational Linguistics (ACL), Dan Roth, who recently joined Amazon Web Services’ AI organization as science lead for natural-language processing, has a good vantage on paper submissions to the conference. On this year’s program, one theme leaped out at him.

Dan Roth.jpg
Dan Roth, science lead for natural-language processing in Amazon Web Services’ AI organization and the Glandt Distinguished Professor in the University of Pennsylvania’s Department of Computer and Information Science.

“I looked at some statistics of papers in ACL, and I saw that there are dozens of papers now that have ‘reasoning’ in the title,” says Roth, who is also the Glandt Distinguished Professor in the University of Pennsylvania’s Department of Computer and Information Science. “The title ‘learning to reason’ is now becoming sort of hot. I think a lot of AI is going in that direction.”

Machine reasoning, Roth says, is “the ability to make inferences, especially in ‘sparse’ situations that are unlikely to have been observed before”. The classic example is deduction: from the facts that all women are mortal and that Sappho is a woman, a machine reasoning system should infer that Sappho is mortal.

Roth is well situated to review recent progress in the field, as it’s been a topic of his own research for more than 25 years. 

“This was actually my PhD work,” he says. “Learning theory was an emerging field at that time. The questions were basically, How can we formalize learning, and what does it mean that something is learnable or not learnable? What are the computational-complexity issues in learning? I was trying to move this towards questions in reasoning, which were never studied from a theoretical perspective or computational-complexity perspective.

“The assumption was that someone gives you an input — a knowledge base, for example — and you present reasoning queries to it, and in this context you want to show what can be computed. My PhD thesis was about showing that if you don't start from a knowledge base, but you jointly do learning from data and reasoning from the resulting, intermediate representation, it’s easier than doing each one of them separately. You could say that end-to-end learning today is an instantiation of this learning-to-reason process, although just conceptually. Technically, the things are very, very different.”

Compositionality

Even though Roth is, in a sense, a pioneer of end-to-end reasoning models, he believes that more-complex reasoning problems will require more-complex modeling.

“We have a lot of hard problems that we are far from being able to address using just one model,” he says. “A lot of the problems will require thinking about things in a modular way. 

Amazon at ACL

Learn more about Amazon's involvement at ACL 2021 — research papers, workshops and tutorials, and committee memberships.

“I'll give you a simple example. I want to ask my virtual assistant, ‘Are we going to make it to dinner before the movie?’ What does this assistant need to do in order to respond to my question? It needs to know where I am now, where the movie is, how long it's going to take to get there — that's easy to do today. How long is dinner? I didn't say anything about it, but we have some idea of the typical length of dinner, maybe as a function of where dinner is. Do I need to find parking? I didn't mention parking. It's an implicit event, but we know that I have to park, maybe next to the dinner place, maybe next to the movie. I have to factor this in.

“So I have to have models that know how to compute things, have some common sense — typical time of dinner, typical time of finding parking, driving between these places. And then I need a model that knows how to put this together. It's not going to be the same model, because I'm not going to train on each question. Many of the problems that we want to address are like that, where there's modularity, and we will never be able to move forward without realizing that there is modularity.”

Symbolic reasoning

Moreover, Roth says, the systems that integrate these separate modules will almost certainly need to use symbolic reasoning, or rule-based manipulation of symbolic representations.

“The growth and the excitement around neural networks has left symbols behind,” Roth says. “Some people think that symbols are an evil invention of the old AI people. But symbols were invented because they’re useful, necessary abstractions. And also, explanations are symbolic, right? When you ask me, ‘Why did you decide this?’ or ‘Why is this implied by that?’, I need to explain it to you, and I need to use symbols when I do this. So I think we are beginning to explore this interesting space between models that are continuous, if you like, and interactions that are largely symbolic.

Some people think that symbols are an evil invention of the old AI people. But symbols were invented because they’re useful, necessary abstractions
Dan Roth

“I'll give you an example. I've worked a lot on reasoning about time, as expressed in natural-language text. If you want to reason about events, you have to use the fact — and people do it all the time — that time is transitive. If A happens before B, and B happens before C, then A happens before C. This will never be written explicitly. So we kind of tell our models ‘Time is transitive’, and we can show that this helps a lot.”

The transitivity of time, however, is something that can be represented in the architecture of a neural network. That won’t always be the case, Roth explains.

“There are some cases where only in postprocessing are you aware of some declarative constraints,” Roth says. “Once you evaluate your model, once you decode, once you make the decision — only then do you want to impose a declarative constraint. Sometimes there are constraints that I was unaware of while I was training the model: the model is fixed, I trained it yesterday, but now I'm using it in a given situation where I'm aware of a constraint, and I want to be able to impose it. And there is very interesting theoretical work that people are doing now on trying to understand the advantages and disadvantage of these two paradigms — when which one is better. But the fact of the matter is that we need both.”

“In the last five years, deep neural networks have had a huge impact, especially in the context of natural language,” Roth adds. “There's a lot of excitement, for good reason. But sooner or later, people get to the realization that that's not sufficient. I think today, more and more people are beginning to think about reasoning problems and the need to decompose and compose to address them.”

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000