Filtering out "forbidden" documents during information retrieval

New method optimizes the twin demands of retrieving relevant content and filtering out bad content.

Content owners make a lot of effort to eliminate bad content that may adversely affect their customers. Bad content can take many forms, such as fake news, paid reviews, spam, offensive language, etc. We call such data items (documents) forbidden docs, or f-docs, for short.

Any data-cleaning process, however, is susceptible to errors. No matter how much effort goes into the cleaning process, some bad content might remain. This week at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), the Alexa Shopping research team presented a paper on information retrieval (IR) in the presence of f-docs. In particular, we’re trying to optimize the twin demands of retrieving content relevant to customer requests and filtering out f-docs.

For example, consider a question posed on a community question-answering (CQA) site, where our goal is to rank answers according to their quality and relevance while filtering out bad ones. The next table presents some answers to the question “Is the Brand X sports watch waterproof?” While some of the answers are helpful, or at least fair, there are a few that should not be exposed to our users as they significantly hurt the search experience.

Forbidden docs.png
A new metric enables information retrieval models to jointly optimize the ordering of query results and the filtration of "forbidden" content.

Filtering algorithms, however, are prone to two types of errors: (1) false positives (i.e., filtering non-f-docs) and (2) false negatives (i.e., including f-docs in the results).

Typically, ranking quality and filtering accuracy are measured independently. However, the number of f-docs left in the ranked list after filtering and their ranking positions heavily affect both the ranking score and the filtering score. Therefore, it is desirable to evaluate the system’s ranking quality as filtering decisions are being made.

The right metric

We look for an evaluation metric that reinforces a ranker according to three criteria: it (1) prunes as many f-docs from the retrieved list as possible; (2) does not prune non-f-docs from the list; and (3) ranks remaining docs according to their relevance to the query while pushing f-docs down the list.

In our paper, my colleagues Nachshon Cohen, Amir Ingber, Elad Kravi, and I analyze the types of metrics that can be used to measure the ranking and filtering quality of the search results. The natural choice is normalized discounted cumulative gain (nDCG), a metric that discounts the relevance of results that appear further down the list; that is, it evaluates a ranking algorithm according to both relevance and rank ordering.

Related content
Locality-sensitive hashing enables cache to hold more than three times as many query results.

With nDCG, relevant labels are associated with positive scores, non-relevant labels with a zero score, and the “forbidden labels” with negative scores. The nDCG score sums the scores of the individual list items, so the score for a ranked list containing f-docs will reflect the number of f-docs in the list, their relative positions in the ranking, and their degree of forbiddenness.

NDCG differs from the ordinary DCG (discounted cumulative gain) score in that the results are normalized by the DCG score of the ideal ranked list — the list ranked according to the ground truth labels. It can be interpreted as a distance between the given rank and the ideal rank.

When all label scores are non-negative — i.e,. no f-docs are among the top k documents in the results — nDCG is bounded in the range [0, 1], where 0 means that all search results are non-relevant, while 1 means that the ranking is ideal.

However, in the presence of negatively scored labels, nDCG is unbounded and therefore unreliable. For instance, unboundedness may lead to extreme over- or undervaluation on some queries, with disproportionate effect on the average metric score.

The nDCGmin metric, a modification of nDCG suggested by Gienapp et al. at CIKM’20, solves this unboundedness problem for the case of negatively scored labels. It measures the DCG scores of both the worst possible ranked list (the reverse of the ideal ranked list) and the ideal list and then performs min-max normalization with these two extreme scores.

Related content
Method using hyperboloid embeddings improves on methods that use vector embeddings by up to 33%.

However, we show in our paper that when ranking and filtering are carried out together — i.e., when the ranker is allowed to retrieve (and to rank) a sublist of the search results — nDCGmin becomes unbounded. As an alternative, we propose nDCGf, a modification of nDCGmin that solves this second unboundedness problem by modifying the normalization scheme in order to handle sublist retrieval.

In particular, nDCGf measures the DCG score of the ideal and the worst sublists over all possible sublists of the results list and then uses the extreme scores of these sublists for min-max normalization.

We show both theoretically and empirically that while nDCGmin is not suitable for the evaluation task of simultaneous ranking and filtering, nDCGf is a reliable metric. Reliability is a standard measure of a metric’s ability to capture the actual difference in performance among rankers, by measuring deviation stability over a test-set of queries.

The next figure shows the reliability of nDCG, nDCGmin, and nDCGf over datasets released for the web-track information retrieval challenge at the Text Retrieval Conference (TREC) for the years 2010-2014. For all years, the reliability of nDCG and nDCGmin is significantly lower than that of nDCGf, due to their improper normalization when negative labels and partial retrieval are allowed.

Metric reliability.png
Reliability of nDCG, nDCGmin, and nDCGf over TREC Web-track datasets for the years 2010–2014.

Model building

After establishing the relevant metric, our paper then shifts focus to jointly learning to rank and filter (LTRF). We assume an LTRF model that optimizes the ranking of the search results while also tuning a filtering threshold such that any document whose score is below this threshold is filtered out.

We experiment with two tasks for which both ranking and filtering are required, using two datasets we compiled: PR (for product reviews) and CQA (for community question answering). We have publicly released the CQA dataset to support further research by the IR community on LTRF tasks.

Related content
A new metric-learning loss function groups together superclasses and learns commonalities within them.

In the PR dataset, our task is to rank product reviews according to their helpfulness while filtering those marked as spam. Similarly, in the CQA dataset our task is to rank lists of human answers to particular questions while filtering bad answers. We show that both ranking only and filtering only fail to provide high-quality ranked-and-filtered lists, measured by nDCGf score.

A key component for model training in any learning-to-rank framework is the loss function to be optimized, which determines the “loss” of the current model with respect to an optimal model. We experiment with several loss functions for model training for the two tasks, demonstrating their success in producing effective LTRF models for the simultaneous-learning-and-filtering task.

LTRF is a new research direction that poses many challenges that deserve further investigation. While our LTRF models succeed at ranking and filtering, the volume of f-docs in the retrieved lists is still too high. Improving the LTRF models is an open challenge, and we hope that our work will encourage other researchers to tackle it.

Related content

JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with content on Prime Video. Key job responsibilities In this role you will work closely with business stakeholders and other data scientists to develop predictive models, forecast key business metrics, dive deep on the customer and content related factors that drive engagement and create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, build with AWS to deploy machine learning and forecasting models while making a significant impact on how Prime Video makes content investment and selection decisions.
IN, KA, Bengaluru
Amazon’s Last Mile Team is looking for a passionate individual with strong machine learning and GenAI engineering skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization, fleet planning. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. Optimizing the last mile delivery requires deep understanding of transportation, supply chain management, pricing strategies and forecasting, and the GenAI approaches for a diverse range of problems to solve. Only through innovative and strategic thinking, we will make the right capital investments in technology, assets and infrastructures that allows for long-term success. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing solutions to better manage and optimize delivery capacity in the last mile network. The successful candidate should have solid research experience in one or more technical areas of Machine Learning or Large Language Models. These positions will focus on identifying and analyzing opportunities to improve existing algorithms and also on optimizing the system policies across the management of external delivery service providers and internal planning strategies. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. To support their proposals, candidates should be able to independently mine and analyze data, and be able to use any necessary programming and statistical analysis software to do so. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.