Filtering out "forbidden" documents during information retrieval

New method optimizes the twin demands of retrieving relevant content and filtering out bad content.

Content owners make a lot of effort to eliminate bad content that may adversely affect their customers. Bad content can take many forms, such as fake news, paid reviews, spam, offensive language, etc. We call such data items (documents) forbidden docs, or f-docs, for short.

Any data-cleaning process, however, is susceptible to errors. No matter how much effort goes into the cleaning process, some bad content might remain. This week at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), the Alexa Shopping research team presented a paper on information retrieval (IR) in the presence of f-docs. In particular, we’re trying to optimize the twin demands of retrieving content relevant to customer requests and filtering out f-docs.

For example, consider a question posed on a community question-answering (CQA) site, where our goal is to rank answers according to their quality and relevance while filtering out bad ones. The next table presents some answers to the question “Is the Brand X sports watch waterproof?” While some of the answers are helpful, or at least fair, there are a few that should not be exposed to our users as they significantly hurt the search experience.

Forbidden docs.png
A new metric enables information retrieval models to jointly optimize the ordering of query results and the filtration of "forbidden" content.

Filtering algorithms, however, are prone to two types of errors: (1) false positives (i.e., filtering non-f-docs) and (2) false negatives (i.e., including f-docs in the results).

Typically, ranking quality and filtering accuracy are measured independently. However, the number of f-docs left in the ranked list after filtering and their ranking positions heavily affect both the ranking score and the filtering score. Therefore, it is desirable to evaluate the system’s ranking quality as filtering decisions are being made.

The right metric

We look for an evaluation metric that reinforces a ranker according to three criteria: it (1) prunes as many f-docs from the retrieved list as possible; (2) does not prune non-f-docs from the list; and (3) ranks remaining docs according to their relevance to the query while pushing f-docs down the list.

In our paper, my colleagues Nachshon Cohen, Amir Ingber, Elad Kravi, and I analyze the types of metrics that can be used to measure the ranking and filtering quality of the search results. The natural choice is normalized discounted cumulative gain (nDCG), a metric that discounts the relevance of results that appear further down the list; that is, it evaluates a ranking algorithm according to both relevance and rank ordering.

Related content
Locality-sensitive hashing enables cache to hold more than three times as many query results.

With nDCG, relevant labels are associated with positive scores, non-relevant labels with a zero score, and the “forbidden labels” with negative scores. The nDCG score sums the scores of the individual list items, so the score for a ranked list containing f-docs will reflect the number of f-docs in the list, their relative positions in the ranking, and their degree of forbiddenness.

NDCG differs from the ordinary DCG (discounted cumulative gain) score in that the results are normalized by the DCG score of the ideal ranked list — the list ranked according to the ground truth labels. It can be interpreted as a distance between the given rank and the ideal rank.

When all label scores are non-negative — i.e,. no f-docs are among the top k documents in the results — nDCG is bounded in the range [0, 1], where 0 means that all search results are non-relevant, while 1 means that the ranking is ideal.

However, in the presence of negatively scored labels, nDCG is unbounded and therefore unreliable. For instance, unboundedness may lead to extreme over- or undervaluation on some queries, with disproportionate effect on the average metric score.

The nDCGmin metric, a modification of nDCG suggested by Gienapp et al. at CIKM’20, solves this unboundedness problem for the case of negatively scored labels. It measures the DCG scores of both the worst possible ranked list (the reverse of the ideal ranked list) and the ideal list and then performs min-max normalization with these two extreme scores.

Related content
Method using hyperboloid embeddings improves on methods that use vector embeddings by up to 33%.

However, we show in our paper that when ranking and filtering are carried out together — i.e., when the ranker is allowed to retrieve (and to rank) a sublist of the search results — nDCGmin becomes unbounded. As an alternative, we propose nDCGf, a modification of nDCGmin that solves this second unboundedness problem by modifying the normalization scheme in order to handle sublist retrieval.

In particular, nDCGf measures the DCG score of the ideal and the worst sublists over all possible sublists of the results list and then uses the extreme scores of these sublists for min-max normalization.

We show both theoretically and empirically that while nDCGmin is not suitable for the evaluation task of simultaneous ranking and filtering, nDCGf is a reliable metric. Reliability is a standard measure of a metric’s ability to capture the actual difference in performance among rankers, by measuring deviation stability over a test-set of queries.

The next figure shows the reliability of nDCG, nDCGmin, and nDCGf over datasets released for the web-track information retrieval challenge at the Text Retrieval Conference (TREC) for the years 2010-2014. For all years, the reliability of nDCG and nDCGmin is significantly lower than that of nDCGf, due to their improper normalization when negative labels and partial retrieval are allowed.

Metric reliability.png
Reliability of nDCG, nDCGmin, and nDCGf over TREC Web-track datasets for the years 2010–2014.

Model building

After establishing the relevant metric, our paper then shifts focus to jointly learning to rank and filter (LTRF). We assume an LTRF model that optimizes the ranking of the search results while also tuning a filtering threshold such that any document whose score is below this threshold is filtered out.

We experiment with two tasks for which both ranking and filtering are required, using two datasets we compiled: PR (for product reviews) and CQA (for community question answering). We have publicly released the CQA dataset to support further research by the IR community on LTRF tasks.

Related content
A new metric-learning loss function groups together superclasses and learns commonalities within them.

In the PR dataset, our task is to rank product reviews according to their helpfulness while filtering those marked as spam. Similarly, in the CQA dataset our task is to rank lists of human answers to particular questions while filtering bad answers. We show that both ranking only and filtering only fail to provide high-quality ranked-and-filtered lists, measured by nDCGf score.

A key component for model training in any learning-to-rank framework is the loss function to be optimized, which determines the “loss” of the current model with respect to an optimal model. We experiment with several loss functions for model training for the two tasks, demonstrating their success in producing effective LTRF models for the simultaneous-learning-and-filtering task.

LTRF is a new research direction that poses many challenges that deserve further investigation. While our LTRF models succeed at ranking and filtering, the volume of f-docs in the retrieved lists is still too high. Improving the LTRF models is an open challenge, and we hope that our work will encourage other researchers to tackle it.

Related content

US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Boston
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics, a wholly owned subsidiary of Amazon.com, empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. AR is seeking uniquely talented and motivated data scientists to join our Global Services and Support (GSS) Tools Team. GSS Tools focuses on improving the supportability of the Amazon Robotics solutions through automation, with the explicit goal of simplifying issue resolution for our global network of Fulfillment Centers. The candidate will work closely with software engineers, Fulfillment Center operation teams, system engineers, and product managers in the development, qualification, documentation, and deployment of new - as well as enhancements to existing - operational models, metrics, and data driven dashboards. As such, this individual must possess the technical aptitude to pick-up new BI tools and programming languages to interface with different data access layers for metric computation, data mining, and data modeling. This role is a 6 month co-op to join AR full time (40 hours/week) from July – December 2023. The Co-op will be responsible for: Diving deep into operational data and metrics to identify and communicate trends used to drive development of new tools for supportability Translating operational metrics into functional requirements for BI-tools, models, and reporting Collaborating with cross functional teams to automate AR problem detection and diagnostics