Auto Machine Translation and Synchronization for "Dive into Deep Learning"

A system built on Amazon Translate reduces the workload of human translators.

Dive into Deep Learning (D2L.ai) is an open-source textbook that makes deep learning accessible to everyone. It features interactive Jupyter notebooks with self-contained code in PyTorch, JAX, TensorFlow, and MXNet, as well as real-world examples, exposition figures, and math. So far, D2L has been adopted by more than 400 universities around the world, such as the University of Cambridge, Stanford University, the Massachusetts Institute of Technology, Carnegie Mellon University, and Tsinghua University.

The latest updates to "Dive into Deep Learning"

Learn about the newest additions to the popular open-source, interactive book, including the addition of a Google JAX implementation and three new chapters in volume 2.

As a result of the book’s widespread adoption, a community of contributors has formed to work on translations in various languages, including Chinese, Japanese, Korean, Portuguese, Turkish, and Vietnamese. To efficiently handle these multiple languages, we have developed the Auto Machine Translation and Synchronization (AMTS) system using Amazon Translate, which aims to reduce the workload of human translators by 80%. The AMTS can be applied to all the languages for translation, and each language-specific sub-AMTS pipeline has its own unique features based on language characteristics and translator preferences.

In this blog post, we will discuss how we build the AMTS framework architecture, its sub-pipelines, and the building blocks of the sub-pipeline. We will demonstrate and analyze the translations between two language pairs: English ↔ Chinese and English ↔ Spanish. Through these analyses, we will recommend best practices for ensuring translation quality and efficiency.

Framework overview

Customers can use Amazon Translate’s Active Custom Translation (ACT) feature to customize translation output on the fly by providing tailored translation examples in the form of parallel data. Parallel data consists of a collection of textual examples in a source language and the desired translations in one or more target languages. During translation, ACT automatically selects the most relevant segments from the parallel data and updates the translation model on the fly based on those segment pairs. This results in translations that better match the style and content of the parallel data.

The AMTS framework consists of multiple sub-pipelines, each of which handles one language translation — English to Chinese, English to Spanish, etc. Multiple translation sub-pipelines can be processed in parallel.

Fundamentally, the sub-pipeline consists of the following steps:

  • Prepare parallel data: The parallel data consists of a list of textual example pairs, in a source language (e.g., English) and a target language (e.g., Chinese). With AMTS, we first prepare the two language datasets and then combine them into one-to-one pairs.
  • Translate through batch jobs: We use the Amazon Translate API call CreateParallelData to import the input file from the Amazon Simple Storage Service (S3) and create a parallel-data resource in Amazon Translate, ready for batch translation jobs. With the parallel-data resource built in the last step, we customize Amazon Translate and use its asynchronous batch process operation to translate a set of documents in the source language in bulk. The translated documents in the target language are stored in Amazon S3.
AMT_paradata_e2e_v2.png

Parallel-data preparation and creation

In the parallel-data preparation step, we build the parallel-data set out of the source documents (sections of the D2L-enbook) and translations produced by professional human translators (e.g., parallel sections from the D2L-zh book). The software module extracts the text from both documents — ignoring code and picture blocks — and pairs them up, storing them in a CSV file. Examples of parallel data are shown in the table below.

English

Chinese

Nonetheless, language models are of great service even in their limited form. For instance, the phrases “to recognize speech” and “to wreck a nice beach” sound very similar. This can cause ambiguity in speech recognition, which is easily resolved through a language model that rejects the second translation as outlandish. Likewise, in a document summarization algorithm it is worthwhile knowing that “dog bites man” is much more frequent than “man bites dog”, or that “I want to eat grandma” is a rather disturbing statement, whereas “I want to eat, grandma” is much more benign.

尽管如此,语言模型依然是非常有用的。例如,短语“to recognize speech”和“to wreck a nice beach”读音上听起来非常相似。这种相似性会导致语音识别中的歧义,但是这很容易通过语言模型来解决,因为第二句的语义很奇怪。同样,在文档摘要生成算法中,“狗咬人”比“人咬狗”出现的频率要高得多,或者“我想吃奶奶”是一个相当匪夷所思的语句,而“我想吃,奶奶”则要正常得多。

Machine translation refers to the automatic translation of a sequence from one language to another. In fact, this field may date back to 1940s soon after digital computers were invented, especially by considering the use of computers for cracking language codes in World War II. For decades, statistical approaches had been dominant in this field before the rise of end-to-end learning using neural networks. The latter is often called neural machine translation to distinguish itself from statistical machine translation that involves statistical analysis in components such as the translation model and the language model.

机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代,特别是在第二次世界大战中使用计算机破解语言编码。几十年来,在使用神经网络进行端到端学习的兴起之前,统计学方法在这一领域一直占据主导地位

Emphasizing end-to-end learning, this book will focus on neural machine translation methods. Different from our language model problem in the last section, whose corpus is in one single language, machine translation datasets are composed of pairs of text sequences that are in the source language and the target language, respectively. Thus, instead of reusing the preprocessing routine for language modeling, we need a different way to preprocess machine translation datasets. In the following, we show how to load the preprocessed data into mini batches for training.

本书的关注点是神经网络机器翻译方法,强调的是端到端的学习。与 上节中的语料库是单一语言的语言模型问题存在不同,机器翻译的数据集是由源语言和目标语言的文本序列对组成的。因此,我们需要一种完全不同的方法来预处理机器翻译数据集,而不是复用语言模型的预处理程序。下面,我们看一下如何将预处理后的数据加载到小批量中用于训练

When the parallel data file is created and ready to use, we upload it to a folder in an S3 bucket and use CreateParallelData to kick off a creation job in Amazon Translate. If we only want to update an existing parallel-data resource with new inputs, the UpdateParallelData API call is the right one to make.

Once the job is completed, we can find the parallel-data resource in the Amazon Translate management console. The resource can be further managed in the AWS Console through the download, update, and delete buttons, as well as through AWS CLI and the public API.

Asynchronous batch translation with parallel data

After the parallel-data resource is created, the next step in the sub-pipeline is to use the Amazon Translate StartTextTranslationJob API call to initiate a batch asynchronous translation. The sub-pipeline uploads the source files into an Amazon S3 bucket folder.

One batch job can handle translation of multiple source documents, and the output files will be put in another S3 bucket folder. In addition to the input and output data configurations, the source language, target language, and prepared parallel-data resource are also specified as parameters in the API invocation.

src_lang = "en" 
tgt_lang =  "zh"
src_fdr = "input-short-test-en2zh"

pd_name = "d2l-parallel-data_v2"

response = translate_client.start_text_translation_job(
            JobName='D2L1',
            InputDataConfig={
                'S3Uri': 's3://'+S3_BUCKET+'/'+src_fdr+'/',
                'ContentType': 'text/html'
            },
            OutputDataConfig={
                'S3Uri': 's3://'+S3_BUCKET+'/output/',
            },
            DataAccessRoleArn=ROLE_ARN,
            SourceLanguageCode=src_lang,
            TargetLanguageCodes=[tgt_lang, ],
            ParallelDataNames=pd_name
)

Depending on the number of input files, the job takes minutes to hours to complete. We can find the job configurations and statuses, including the output file location, on the Amazon Translate management console.

The translated documents are available in the output S3 folder, with the filename <target language>.<source filename>. Users can download them and perform further evaluation.

Using parallel data yields better translation

To evaluate translation performance in each sub-pipeline, we selected five articles from the English version of D2L and translated them into Chinese through the en-zh sub-pipeline. Then we calculated the BLEU score of each translated document. The BLEU (BiLingual Evaluation Understudy) score calculates the similarity of the AMTS translated output to the reference translation by human translator. The number is between 0 and 1; the higher the score, the better the quality of the translation.

We then compare the AMTS-generated results with the translation of the same document using the traditional method (without parallel data). The traditional method is implemented by the TranslateText API call, whose parameters include the name of the source text and the source and target languages.

src_lang = "en" 
tgt_lang =  "zh"    
    
 response = translate_client.translate_text(
         Text = text, 
         TerminologyNames = [],
         SourceLanguageCode = src_lang, 
         TargetLanguageCode = tgt_lang
)

The translation results are compared in the following table, for both English-to-Chinese and Chinese-to-English translation. We observe that the translation with parallel data shows improvement over the traditional method.

Article

EN to ZH

ZH to EN

Without ACT

With ACT

Without ACT

With ACT

approx-training

0.553

0.549

0.717

0.747

bert-dataset

0.548

0.612

0.771

0.831

language-models-and-dataset

0.502

0.518

0.683

0.736

machine-translation-and-dataset

0.519

0.546

0.706

0.788

sentiment-analysis-and-dataset

0.558

0.631

0.725

0.828

Average

0.536

0.5712

0.7204

0.786

Fine-tuning the parallel data to improve translation quality

To further improve the translation quality, we construct the parallel-data pairs in a more granular manner. Instead of extracting parallel paragraphs from source and reference documents and pairing them up, we further split each paragraph into multiple sentences and use sentence pairs as training examples.

EN

ZH

Likewise, in a document summarization algorithm it is worthwhile knowing that “dog bites man” is much more frequent than “man bites dog”, or that “I want to eat grandma” is a rather disturbing statement, whereas “I want to eat, grandma” is much more benign

同样,在文档摘要生成算法中,“狗咬人”比“人咬狗”出现的频率要高得多,或者“我想吃奶奶”是一个相当匪夷所思的语句,而“我想吃,奶奶”则要正常得多

For decades, statistical approaches had been dominant in this field before the rise of end-to-end learning using neural networks

几十年来,在使用神经网络进行端到端学习的兴起之前,统计学方法在这一领域一直占据主导地位

In the following, we show how to load the preprocessed data into minibatches for training

下面,我们看一下如何将预处理后的数据加载到小批量中用于训练

We tested both the paragraph pair and sentence pair methods and found that more-granular data (sentence pairs) yields better translation quality than less-granular data (paragraph paragraphs). The comparison is shown in the table below for English ↔ Chinese translation.

Article

EN to ZH

ZH to EN

ACT by “pair of paragraph”

ACT by “pair of sentence”

ACT by “pair of paragraph”

ACT by “pair of sentence”

approx-training

0.549

0.589

0.747

0.77

bert-dataset

0.612

0.689

0.831

0.9

language-models-and-dataset

0.518

0.607

0.736

0.806

machine-translation-and-dataset

0.546

0.599

0.788

0.89

sentiment-analysis-and-dataset

0.631

0.712

0.828

0.862

Average

0.5712

0.6392

0.786

0.8456

Extend usage of parallel data to general machine translation

To extend the usability of parallel data to general machine translation, we need to construct parallel-data sets from a large volume of translated documents. To maximize translation accuracy, the parallel datasets should have the same contexts and subjects as the documents to be translated.

We tested this approach in the English ↔ Spanish sub-pipeline. The parallel data pairs were built from English ↔ Spanish articles crawled from the web using the keyword “machine learning”.

We applied this parallel data in translating an English article (abbreviated DLvsML in the results table) into Spanish and compared the results with those of traditional translation, without parallel data. The BLEU scores show that parallel data with the same subject (“machine learning”) does help to improve the performance of general machine translation.

EN to ES

ES to EN

Without ACT

With ACT

Without ACT

With ACT

DLvsML

0.792

0.824

0.809

0.827

The relative fluency of translations from English to Spanish, with and without ACT, can be seen in the table below.

EN source text

ES reference text (human translation)

ES translation without ACT

ES translation with ACT

Moves through the learning process by resolving the problem on an end-to-end basis.

Pasa por el proceso de aprendizaje mediante la resolución del problema de un extremo a otro.

Avanza en el proceso de aprendizaje resolviendo el problema de un extremo a otro.

Avanza el proceso de aprendizaje resolviendo el problema de forma integral.

Deep learning use cases

Casos de uso del aprendizaje profundo

Casos de uso de aprendizaje profundo

Casos prácticos de aprendizaje profundo

Image caption generation

Generación de subtítulos para imágenes

Generación de leyendas de imágenes

Generación de subtítulos de imagen

Conclusion and best practices

In this post, we introduced the Auto Machine Translation and Synchronization (AMTS) framework and pipelines and their application to English ↔ Chinese and English ↔ Spanish D2L.ai auto-translation. We also discussed best practices for using the Amazon Translate service in the translation pipeline, particularly the advantages of the Active Custom Translation (ACT) feature with parallel data.

  • Leveraging the Amazon Translate service, the AMTS pipeline provides fluent translations. Informal qualitative assessments suggest that the translated texts read naturally and are mostly grammatically correct.
  • In general, the ACT feature with parallel data improves translation quality in the AMTS sub-pipeline. We show that using the ACT feature leads to better performance than using the traditional Amazon Translate real-time translation service.
  • The more granular the parallel data pairs are, the better the translation performance. We recommend constructing the parallel data as pairs of sentences, rather than pairs of paragraphs.

We are working on further improving the AMTS framework to improve translation quality for other languages. Your feedback is always welcome.

Research areas

Related content

US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Palo Alto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Conversational Ad Experiences team within Sponsored Products and Brands is a cross-functional team focusing on designing, developing and launching innovative ad experiences in conversational contexts. We utilize leading-edge engineering and science technologies in generative AI to help shoppers discover new products and brands through intuitive, conversational, multi-turn interfaces. We also empower advertisers to reach shoppers, using their own voice to explain and demonstrate how their products meet shoppers' needs. We collaborate with various teams across multiple Amazon organizations to push the boundary of what's possible in these fields. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! As an Applied Scientist II in the Conversational Ad Experiences team, you'll be working with scientists, engineers, and product managers to innovate on behalf of our customers. An ideal candidate is able to navigate through ambiguous requirements, working with various partner teams, and has experience in generative AI, large language models (LLMs), information retrieval, and recommendation systems. Using a combination of generative AI and online experimentation, our scientists develop insights and optimizations that enable the monetization of Amazon properties while enhancing the experience of hundreds of millions of Amazon shoppers worldwide. Key job responsibilities - Drive end-to-end generative AI projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis of data sets to identify insights and build models that enhance traffic monetization, merchandise sales, and the overall shopper experience. - Train generative AI and machine learning models, run proof-of-concept experiments, optimize, and deploy models at scale in production - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. - Research new and innovative generative AI and machine learning approaches. - Work closely with product managers to contribute to our mission, and proactively identify science opportunities to drive business. - Be a member of the Amazon-wide machine learning community, participating in internal and external meetups, hackathons and conferences.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians on a mission to develop a fault-tolerant quantum computer. You will be joining a team located in Pasadena, CA that conducts materials research to improve the performance of superconducting quantum processors. We seek a Quantum Research Scientist to investigate how material defects affect qubit performance. In this role, you will combine expertise in numerical simulations and materials characterization to study materials loss mechanisms such as two-level systems, quasiparticles, vortices, etc. Key job responsibilities Provide subject matter expertise on integrated experimental and computational studies of materials defects Develop and use computational tools for large-scale simulations of disordered structures Develop and implement multi-technique materials characterization workflows for thin films and devices, with a focus on the surfaces and interfaces Identify material properties that can be a reliable proxy for the performance of superconducting resonators and qubits Communicate findings to teammates, the broader CQC team and, when appropriate, publish findings in scientific journals A day in the life At the AWS CQC, we understand that developing quantum computing technology is a marathon, not a sprint. The work/life integration within our team encourages a culture where employees work hard and also have ownership over their downtime. We are committed to the growth and development of every employee at the AWS CQC, and that includes our research scientists. You will receive management and mentorship from within the team that is geared toward career growth, and also have the opportunity to participate in Amazon's mentorship programs for scientists and engineers. Working closely with other quantum research scientists in other disciplines – like design, measurement and cryogenic hardware – will provide opportunities to dive deep into an education on quantum computing. About the team Our team contributes to the fabrication of processors and other hardware that enable quantum computing technologies. Doing that necessitates the development of materials with tailored properties for superconducting circuits. Research Scientists and Engineers on the Materials team operate deposition and characterization systems in order to develop and optimize thin film processes for use in these devices. They work alongside other Research Scientists and Engineers to help deliver the fabricated devices for quantum computing experiments. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, MA, North Reading
Amazon Newco is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine frontier AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This role will lead the development of physics-based simulation infrastructure critical to accelerating our development of complex robotic systems operating in real-world conditions. The ideal candidate will bridge deep theoretical physics understanding with practical engineering implementation to enable rapid iteration and validation of robot designs before physical prototyping. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. Key job responsibilities - Architect and lead the development of comprehensive simulation environments supporting multi-modal robotics development. - Drive simulation-based design optimization across mechanical, electrical, and control systems. - Lead validation of simulation results against physical systems. - Collaborate with hardware, software, and AI teams to accelerate development cycles. - Build and lead a world-class simulation team. - Partner with safety certification teams to validate complex interaction scenarios. A day in the life Lead the development and implementation of advanced physics-based simulation capabilities supporting Amazon's most ambitious robotics program to date. The ideal candidate will bridge theoretical physics understanding with practical engineering implementation, leading a team that enables rapid iteration and validation of complex robotic systems.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities What will you do? - Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms - Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques - Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine - Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics - Train custom Gen AI models that beat SOTA and paves path for developing production models - Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices - Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.