Alexa enters the “age of self”

More-autonomous machine learning systems will make Alexa more self-aware, self-learning, and self-service.

Alexa launched in 2014, and in the more than six years since, we’ve been making good on our promise to make Alexa smarter every day. In addition to foundational improvements in Alexa’s core AI technologies, such as speech recognition and natural-language-understanding systems, Alexa scientists have developed technologies that continue to delight our customers, such as whispered speech and Alexa’s new live translation service.

Prem Natarajan, Alexa AI vice president of natural understanding, giving a presentation
Prem Natarajan, Alexa AI vice president of natural understanding, at a conference in 2018.

But some of the technologies we’ve begun to introduce, together with others we’re now investigating, are harbingers of a step change in Alexa’s development — and in the field of AI itself. Collectively, these technologies will bring a new level of generalizability and autonomy to both the Alexa voice service and the tools available to Alexa developers, ushering in what I like to think of as a new “age of self” in artificial intelligence, an age in which AI systems such as Alexa become more self-aware and more self-learning, and in which they lend themselves to self-service by experienced developers and even end users.

By self-awareness, I mean the ability to maintain an awareness of ambient state (e.g., time of day, thermostat readings, and recent actions) and to employ commonsense reasoning to make inferences that reflect that awareness and prior/world knowledge. Alexa hunches can already recognize anomalies in customers’ daily routines and suggest corrections — noticing that a light was left on at night and offering to turn it off, for instance. Powered by commonsense reasoning, self-awareness goes further: for instance, if a customer turns on the television five minutes before the kids’ soccer practice is scheduled to end, an AI of the future might infer that the customer needs a reminder about pickup.

Smart home.png
In the "age of self", AIs will be able to infer customers’ implicit intentions from observable temporal patterns, such as interactions with smart-home devices like thermostats, door locks, and lights.

Self-learning is Alexa’s ability to improve and expand its capabilities without human intervention. And like self-awareness, self-learning employs reasoning: for example, does the customer’s response to an action indicate dissatisfaction with that action? Similarly, when a customer issues an unfamiliar command, a truly self-learning Alexa would be able to infer what it might mean — perhaps by searching the web or exploring a knowledge base — and suggest possibilities.

Self-service means, essentially, the democratization of AI. Alexa customers with no programming experience should be able to customize Alexa’s services and even create new Alexa capabilities, and skill developers without machine learning experience should be able to build complex yet robust conversational skills. Colloquially, these are the conversational-AI equivalents of no-code and low-code development environments.

To be clear, the age of self is not yet upon us, and its dawning will require the maturation of technologies still under development, at Amazon and elsewhere. But some of Alexa’s recently launched capabilities herald a lightening in the Eastern sky.

Self-awareness

In 2018, we launched Alexa hunches for the smart home, with Alexa suggesting actions to take in response to anomalous sensor data. By early 2021, the science has advanced adequately for us to launch an opt-in service in which Alexa can take action immediately and automatically. In the meantime, we’ve also been working to expand hunches to Alexa services other than the smart home.

Technologies will bring a new level of generalizability and autonomy to both the Alexa voice service and the tools available to Alexa developers, ushering in what I like to think of as a new 'age of self' in artificial intelligence.
Prem Natarajan

But commonsense reasoning requires something more — the ability to infer customers’ implicit intentions from observable temporal patterns. For instance, what does it mean if the customer turns down the thermostat, turns out the lights, locks the front door, and opens the garage? What if the customer initiates an interaction with a query like “Alexa, what’s playing at Rolling Hills Cine Plaza?”

In 2020, we took steps toward commonsense reasoning with a new Alexa function that can infer a customer’s latent goal— the ultimate aim that lies behind a sequence of requests. When a customer asks for the weather at the beach, for instance, Alexa might use that query, in combination with other contextual information, to infer that the customer may be interested in a trip to the beach. Alexa could then offer the current driving time to the beach.

To retrieve that information, Alexa has to know to map the location of the weather request to the destination variable in the route-planning function. This illustrates another aspect of self-awareness: the ability to track information across contexts.

That ability is at the core of the night-out experience we’ve developed, which engages the customer in a multiturn conversation to plan a complete night out, from buying movie tickets to making restaurant and ride-share reservations. The night-out experience tracks times and locations across skills, revising them on the fly as customers evaluate different options. To build the experience, we leveraged the machinery of Alexa Conversations, a service that enables developers to quickly and easily create dialogue-driven skills, and we drew on our growing body of research on dialogue state tracking.

Slot_tracking.png._CB436837753_.png
Dialogue states at several successive dialogue turns

Self-awareness, however, includes an understanding not only of the conversational context but also of the customer’s physical context. In 2020, we demonstrated natural turn-taking on Alexa-enabled devices with cameras. When multiple speakers are engaging with Alexa, Alexa can use visual cues to distinguish between speech the customers are directing at each other and speech they’re directing at Alexa. In ongoing work, we’re working to expand this functionality to devices without cameras, by relying solely on acoustic and linguistic signals.

Finally, self-awareness also entails the capacity for self-explanation. Today, most machine learning models are black boxes; even their creators have no idea how they’re doing what they do. That uncertainty has turned explainable or interpretable AI into a popular research topic.

Amazon actively publishes on explainable-AI topics. In addition, the Alexa Fund, an Amazon venture capital investment program, invested in fiddler.ai, a startup that uses techniques based on the game-theoretical concept of Shapley values to do explainable AI.

Self-learning

Historically, the AI development cycle has involved collection of data, annotation of that data, and retraining of models on the newly annotated data — all of which add up to a laborious process.

In 2019, we launched Alexa’s self-learning system, which automatically learns to correct errors — both customer errors and errors in Alexa’s language-understanding models — without human involvement. The system relies on implicit signals that a request was improperly handled, as when a customer interrupts a response and rephrases the same request.

Absorbing-Markov-chain models for three different sequences of utterances
Alexa's self-learning system models customer interactions with Alexa as sequences of states; different customer utterances (u0, u1, u2) can correspond to the same state (h0). The final state of a sequence, known as the "absorbing state", indicates the success (checkmark) or failure (X) of a transaction.
Stacy Reilly

Currently, that fully automatic system is correcting 15% of defects. But those are defects that occur across a spectrum of users; only when enough people implicitly identify the same flaw does the system address it. We are working to adapt the same machinery to individual customers’ preferences — so that, for instance, Alexa can learn that when a particular customer asks for the song “Wow”, she means not the Post Malone hit from 2019 but the 1978 Kate Bush song.

Customers today also have the option of explicitly teaching Alexa their preferences. In the fall of 2020, we launched interactive teaching by customers, a capability that enables customers to instruct Alexa how they want certain requests to be handled. For instance, the customer can teach Alexa that the command “reading mode” means lights turned all the way up, while “movie mode” means only twenty percent up.

Self-service

Interactive teaching is also an early example of how Alexa is enabling more self-service. It extends prior Alexa features, like blueprints, which let customers build their own simple skills from preexisting templates, and routines, which let customers chain together sequences of actions under individual commands.

In March 2021, we announced the public release of Alexa Conversations, which allows developers to create dialogue-driven skills by uploading sample dialogues. Alexa Conversations’ sophisticated machine learning models use those dialogues as templates for generating larger corpora of synthetic training data. From that data, Alexa Conversations automatically trains a machine learning model.

Alexa Conversations does, however, require the developer to specify the set of entities that the new model should act upon and an application programming interface for the skill. So while it requires little familiarity with machine learning, it assumes some programming experience. 

ambiguous_slots.gif._CB438712971_.gif
An Alexa feature known as catalogue value suggestions suggests entity names to skill developers on the basis of their "embeddings", or locations in a representational space. If the embeddings of values (such as bird, dog, or cat) for a particular entity type are close enough (dotted circles) to their averages (solid circle and square), the system suggests new entity names; otherwise, it concludes that suggestions would be unproductive.
Animation by Nick Little

We are steadily chipping away at even that requirement, by making development for Alexa easier and more intuitive. As Alexa’s repertory of skills grows, for instance, entities are frequently reused, and we already have systems that can inform developers about entity types that they might not have thought to add to their skills. This is a step toward a self-service model in which developers no longer have to provide exhaustive lists of entities — or, in some cases, any entities at all.

Another technique that makes it easier to build machine learning models is few-shot learning, in which an existing model is generalized to a related task using only a handful of new training examples. This is an active area of research at Alexa: earlier this year, for example, we presented a paper at the Spoken Language Technologies conference that described a new approach to few-shot learning for natural-language-understanding tasks. Compared to its predecessors, our approach reduced the error rate on certain natural-language-understanding tasks by up to 12.4%, when each model was trained on only 10 examples.

These advances, along with the others reported on Amazon Science, demonstrate that the Alexa AI team continues to accelerate its pace of invention. More exciting announcements lie just over the horizon. I’ll be stopping back here every once in a while to update you on Alexa’s journey into the age of self.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
IL, Haifa
Job summaryThe Team: Amazon One is a fast, convenient, contactless way for people to use their palm to make everyday activities like paying at a store, presenting a loyalty card, entering a location like a stadium, or badging into work more effortless. The service is designed to be highly secure and uses custom-built algorithms and hardware to create a person’s unique palm signature. Designed and custom-built by Amazonians, it uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design.The Role: Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems.If you have expertise leading Computer Vision research teams and have a Ph.D, or an MS with 2+ years of industry experience and have:the ability to recognize and champion new ideas and novel solutions;the insight to correctly identify paths worth exploring;the discipline to fast-fail when data refutes theory;and the fortitude to continue exploring until your solution is foundcome join us invent the future and change the world.
US, VA, Arlington
Job summaryAre you customer-obsessed, data oriented, and confident in proposing opportunities to improve our consumers’ experience across different Amazon businesses? Amazon is looking for an experienced, talented and highly motivated individual to join our Customer Loyalty Strategy team.We are seeking a Research scientist who will primarily support development of customer experience research studies across a variety of Amazon businesses. You will join an expanding team which measures Amazon’s end-to-end customer experience and will design research studies find and track customer issues, and eventually to achieve our vision: Earth's Most Customer-Centric Company.Leveraging your analytical skill set and research background, you will drive studies across multiple geographies, partnering with senior business leaders in developing studies and conducting customer research. The role will allow you to make a real impact for our customers from Day 1 and provide a dynamic, innovative and fast-paced environment to constantly build your skill set and address new challenges.Key job responsibilitiesResponsibilities include:· Customer Research and Analytics: Design, execute, and manage customer research to measure customer loyalty and Net Promoter Score (NPS) and identify opportunities to improve CX.· Product Management: Lead large and complex studies, including: scope alignment with local and international business leaders, design, data collection, data analysis, recommendations and presenting results to senior management worldwide. Research & Development: Enable best in class research by constantly updating the research methodology through experimentation (A/B Testing) and adding analytical capabilities. Research Consulting: Enable business teams at Amazon to discover ways in which they can implement research methodologies to drive strategic and incremental improvements in customer experience. About the teamCustomer Loyalty Benchmarking (CLB) is a global product, technology, and marketing research team whose charter is to provide quantitative and qualitative customer sentiment and loyalty insight, at scale, for Amazon internal businesses and service teams. Our vision is to empower our global partners to grow customer loyalty through actionable customer insights.
US, CA, Santa Clara
Job summaryAmazon is looking for a passionate Senior Applied Scientist with a strong machine learning background to help build language technology and apply to a new domain. Our team pushes the envelope in Natural Language Processing (NLP), and Machine Learning (ML). Your work will impact millions of our customers in the form of ML-based products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The ideal candidate has deep expertise in one or several of the following fields: Natural Language Processing, Conversational AI, Applied/Theoretical Machine Learning, Information Retrieval, Artificial Intelligence. Our team’s mission is focused on making Amazon the most trusted and customer-centric company on earth for consumers, advertisers, developers, creators, and selling partners (and growing). We are a cross-functional team of builders with a vision to disrupt proactive risk identification and empower business customers to use data to make fast, risk-informed decisions, and scale expert knowledge (e.g., economics, web3 technologies, cybersecurity, architecture design).Key job responsibilities• Invent or adapt new scientific approaches, models or algorithms driven by customers’ needs, including taking on challenging problems, elicit requirements, and deliver innovative solutions into production with large customer impact.• Work with cross-functional science, engineering and product teams, and influence our science and business strategy by making insightful contributions to team roadmaps, goals, priorities, and approach.• Research, design and implement scalable computer vision models to solve problems that matter to our customers in an iterative fashion.• Mentor and teach other less experienced scientists, and serve in the internal and/or external science community by reviewing peers’ research.• Stay informed on the latest computer vision, machine learning, deep learning and/or artificial intelligence trends and make presentations to the larger engineering and applied science communities.A day in the lifeThis is a new role for a start-up team with an enormous opportunity to create impact to millions of Amazon customers globally. As a Senior Applied Scientist, you will provide Computer Vision expertise that helps accelerate the business and create impact for our customers. You will research, experiment, build, collaborate, and deliver various models that help us innovate different ways to enhance customer experience. You will need to be entrepreneurial, wear many hats, and work in a highly collaborative environment. We like to move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality.About the teamCustomer Experience and Business Trends is an organization made up of a diverse suite of functions dedicated to deeply understanding and improving customer experience, globally. We are a team of builders that develop products, services, ideas, and various ways of leveraging data to influence product and service offerings – for almost every business at Amazon – for every customer (e.g., consumers, developers, sellers/brands, employees, investors, streamers, gamers). Our team also puts a high value on work-life balance. We offer a flexible schedule so you can have a well-balanced life — both in and outside of work.
US, CA, Santa Clara
Job summaryWe're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect customers data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilitiesDeeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community.Engage with our customers to develop understanding of their needs.Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving.Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare.Author papers and present your work internally and externally.Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning.About the teamOur small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services.Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale.We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even image yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun.The Amazon Robotics (AR) Virtual Systems Profiling team builds models, runs simulation experiments and delivers analyses that are central to understanding performance of the entire AR system, e.g. operational and software scaling characteristics, bottlenecks, robustness to “chaos monkey” stresses -- we inform critical engineering and business decisions about Amazon’s approach to robotic fulfillment.We seek a talented and motivated engineer to tackle broad challenges in system-level analysis. You will work in a small team to quantify system performance at scale and to expand the breadth and depth of our analysis (e.g. increase the range of software components and warehouse processes covered by our models, develop our library of key performance indicators, construct experiments that efficiently root cause emergent behaviors). You will engage with growing teams of software development and warehouse design engineers to drive evolution of the AR system and of the simulation engine that supports our work.