Alexa enters the “age of self”

More-autonomous machine learning systems will make Alexa more self-aware, self-learning, and self-service.

Alexa launched in 2014, and in the more than six years since, we’ve been making good on our promise to make Alexa smarter every day. In addition to foundational improvements in Alexa’s core AI technologies, such as speech recognition and natural-language-understanding systems, Alexa scientists have developed technologies that continue to delight our customers, such as whispered speech and Alexa’s new live translation service.

Prem Natarajan, Alexa AI vice president of natural understanding, giving a presentation
Prem Natarajan, Alexa AI vice president of natural understanding, at a conference in 2018.

But some of the technologies we’ve begun to introduce, together with others we’re now investigating, are harbingers of a step change in Alexa’s development — and in the field of AI itself. Collectively, these technologies will bring a new level of generalizability and autonomy to both the Alexa voice service and the tools available to Alexa developers, ushering in what I like to think of as a new “age of self” in artificial intelligence, an age in which AI systems such as Alexa become more self-aware and more self-learning, and in which they lend themselves to self-service by experienced developers and even end users.

By self-awareness, I mean the ability to maintain an awareness of ambient state (e.g., time of day, thermostat readings, and recent actions) and to employ commonsense reasoning to make inferences that reflect that awareness and prior/world knowledge. Alexa hunches can already recognize anomalies in customers’ daily routines and suggest corrections — noticing that a light was left on at night and offering to turn it off, for instance. Powered by commonsense reasoning, self-awareness goes further: for instance, if a customer turns on the television five minutes before the kids’ soccer practice is scheduled to end, an AI of the future might infer that the customer needs a reminder about pickup.

Smart home.png
In the "age of self", AIs will be able to infer customers’ implicit intentions from observable temporal patterns, such as interactions with smart-home devices like thermostats, door locks, and lights.

Self-learning is Alexa’s ability to improve and expand its capabilities without human intervention. And like self-awareness, self-learning employs reasoning: for example, does the customer’s response to an action indicate dissatisfaction with that action? Similarly, when a customer issues an unfamiliar command, a truly self-learning Alexa would be able to infer what it might mean — perhaps by searching the web or exploring a knowledge base — and suggest possibilities.

Self-service means, essentially, the democratization of AI. Alexa customers with no programming experience should be able to customize Alexa’s services and even create new Alexa capabilities, and skill developers without machine learning experience should be able to build complex yet robust conversational skills. Colloquially, these are the conversational-AI equivalents of no-code and low-code development environments.

To be clear, the age of self is not yet upon us, and its dawning will require the maturation of technologies still under development, at Amazon and elsewhere. But some of Alexa’s recently launched capabilities herald a lightening in the Eastern sky.

Self-awareness

In 2018, we launched Alexa hunches for the smart home, with Alexa suggesting actions to take in response to anomalous sensor data. By early 2021, the science has advanced adequately for us to launch an opt-in service in which Alexa can take action immediately and automatically. In the meantime, we’ve also been working to expand hunches to Alexa services other than the smart home.

Technologies will bring a new level of generalizability and autonomy to both the Alexa voice service and the tools available to Alexa developers, ushering in what I like to think of as a new 'age of self' in artificial intelligence.
Prem Natarajan

But commonsense reasoning requires something more — the ability to infer customers’ implicit intentions from observable temporal patterns. For instance, what does it mean if the customer turns down the thermostat, turns out the lights, locks the front door, and opens the garage? What if the customer initiates an interaction with a query like “Alexa, what’s playing at Rolling Hills Cine Plaza?”

In 2020, we took steps toward commonsense reasoning with a new Alexa function that can infer a customer’s latent goal— the ultimate aim that lies behind a sequence of requests. When a customer asks for the weather at the beach, for instance, Alexa might use that query, in combination with other contextual information, to infer that the customer may be interested in a trip to the beach. Alexa could then offer the current driving time to the beach.

To retrieve that information, Alexa has to know to map the location of the weather request to the destination variable in the route-planning function. This illustrates another aspect of self-awareness: the ability to track information across contexts.

That ability is at the core of the night-out experience we’ve developed, which engages the customer in a multiturn conversation to plan a complete night out, from buying movie tickets to making restaurant and ride-share reservations. The night-out experience tracks times and locations across skills, revising them on the fly as customers evaluate different options. To build the experience, we leveraged the machinery of Alexa Conversations, a service that enables developers to quickly and easily create dialogue-driven skills, and we drew on our growing body of research on dialogue state tracking.

Slot_tracking.png._CB436837753_.png
Dialogue states at several successive dialogue turns

Self-awareness, however, includes an understanding not only of the conversational context but also of the customer’s physical context. In 2020, we demonstrated natural turn-taking on Alexa-enabled devices with cameras. When multiple speakers are engaging with Alexa, Alexa can use visual cues to distinguish between speech the customers are directing at each other and speech they’re directing at Alexa. In ongoing work, we’re working to expand this functionality to devices without cameras, by relying solely on acoustic and linguistic signals.

Finally, self-awareness also entails the capacity for self-explanation. Today, most machine learning models are black boxes; even their creators have no idea how they’re doing what they do. That uncertainty has turned explainable or interpretable AI into a popular research topic.

Amazon actively publishes on explainable-AI topics. In addition, the Alexa Fund, an Amazon venture capital investment program, invested in fiddler.ai, a startup that uses techniques based on the game-theoretical concept of Shapley values to do explainable AI.

Self-learning

Historically, the AI development cycle has involved collection of data, annotation of that data, and retraining of models on the newly annotated data — all of which add up to a laborious process.

In 2019, we launched Alexa’s self-learning system, which automatically learns to correct errors — both customer errors and errors in Alexa’s language-understanding models — without human involvement. The system relies on implicit signals that a request was improperly handled, as when a customer interrupts a response and rephrases the same request.

Absorbing-Markov-chain models for three different sequences of utterances
Alexa's self-learning system models customer interactions with Alexa as sequences of states; different customer utterances (u0, u1, u2) can correspond to the same state (h0). The final state of a sequence, known as the "absorbing state", indicates the success (checkmark) or failure (X) of a transaction.
Stacy Reilly

Currently, that fully automatic system is correcting 15% of defects. But those are defects that occur across a spectrum of users; only when enough people implicitly identify the same flaw does the system address it. We are working to adapt the same machinery to individual customers’ preferences — so that, for instance, Alexa can learn that when a particular customer asks for the song “Wow”, she means not the Post Malone hit from 2019 but the 1978 Kate Bush song.

Customers today also have the option of explicitly teaching Alexa their preferences. In the fall of 2020, we launched interactive teaching by customers, a capability that enables customers to instruct Alexa how they want certain requests to be handled. For instance, the customer can teach Alexa that the command “reading mode” means lights turned all the way up, while “movie mode” means only twenty percent up.

Self-service

Interactive teaching is also an early example of how Alexa is enabling more self-service. It extends prior Alexa features, like blueprints, which let customers build their own simple skills from preexisting templates, and routines, which let customers chain together sequences of actions under individual commands.

In March 2021, we announced the public release of Alexa Conversations, which allows developers to create dialogue-driven skills by uploading sample dialogues. Alexa Conversations’ sophisticated machine learning models use those dialogues as templates for generating larger corpora of synthetic training data. From that data, Alexa Conversations automatically trains a machine learning model.

Alexa Conversations does, however, require the developer to specify the set of entities that the new model should act upon and an application programming interface for the skill. So while it requires little familiarity with machine learning, it assumes some programming experience. 

ambiguous_slots.gif._CB438712971_.gif
An Alexa feature known as catalogue value suggestions suggests entity names to skill developers on the basis of their "embeddings", or locations in a representational space. If the embeddings of values (such as bird, dog, or cat) for a particular entity type are close enough (dotted circles) to their averages (solid circle and square), the system suggests new entity names; otherwise, it concludes that suggestions would be unproductive.
Animation by Nick Little

We are steadily chipping away at even that requirement, by making development for Alexa easier and more intuitive. As Alexa’s repertory of skills grows, for instance, entities are frequently reused, and we already have systems that can inform developers about entity types that they might not have thought to add to their skills. This is a step toward a self-service model in which developers no longer have to provide exhaustive lists of entities — or, in some cases, any entities at all.

Another technique that makes it easier to build machine learning models is few-shot learning, in which an existing model is generalized to a related task using only a handful of new training examples. This is an active area of research at Alexa: earlier this year, for example, we presented a paper at the Spoken Language Technologies conference that described a new approach to few-shot learning for natural-language-understanding tasks. Compared to its predecessors, our approach reduced the error rate on certain natural-language-understanding tasks by up to 12.4%, when each model was trained on only 10 examples.

These advances, along with the others reported on Amazon Science, demonstrate that the Alexa AI team continues to accelerate its pace of invention. More exciting announcements lie just over the horizon. I’ll be stopping back here every once in a while to update you on Alexa’s journey into the age of self.

Research areas

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
IN, TS, Hyderabad
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Hyderabad office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions that measure the comprehensive impact of ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We leverage a host of scientific methods, approaches and technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As a Senior Applied Scientist on the team, you will lead the development of measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Lead a team of scientists to innovate on state-of-the-art ads measurement solutions leveraging artificial intelligence, causal inference, natural language processing, computer vision, and large language models. - Directly contribute to the end-to-end delivery of production solutions through careful designs and owning implementation of significant portions of critical-path code - Lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for others with exemplary analyses; maintainable, extensible code; and simple, effective solutions. - Influence team business and engineering strategies. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations among scientists and engineers to move fast and broaden impact. - Actively engage in the development of others, both within and outside of the team. - Regularly engage with the broader science community with presentations, publications, and patents. About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, CA, San Francisco
The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team Agentic AI drives innovation at the forefront of artificial intelligence, enabling customers to transform their businesses through cutting-edge AI solutions. We build and deliver the foundational AI services that power the future of cloud computing, helping organizations harness the potential of AI to solve their most complex challenges. Join our dynamic team of AI/ML practitioners, applied scientists, software engineers, and solution architects who work backwards from customer needs to create groundbreaking technologies. If you're passionate about shaping the future of AI while making a meaningful impact for customers worldwide, we want to hear from you. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.