Whisper to Alexa, and She’ll Whisper Back

If you’re in a room where a child has just fallen asleep, and someone else walks in, you might start speaking in a whisper, to indicate that you’re trying to keep the room quiet. The other person will probably start whispering, too.

Cozy in his crib
Image of a sleeping child, from the slide deck that Amazon senior vice president Dave Limp used when announcing whisper mode.
PeopleImages/Getty Images/iStockphoto

We would like Alexa to react to conversational cues in just such a natural, intuitive way, and toward that end, Amazon last week announced Alexa’s new whisper mode, which will let Alexa-enabled devices respond to whispered speech by whispering back. (The U.S. English version will be available in October.)

At the IEEE Workshop on Spoken Language Technology, in December, my colleagues and I will present a paper that describes the techniques we used to enable whisper mode. The ultimate implementation differs somewhat, but the basic principles are the same.

Whispered speech is predominantly unvoiced, meaning that it doesn’t involve the vibration of the vocal cords, and it has less energy in lower frequency bands than ordinary speech. Previously, researchers have sought to exploit these facts by training their classifiers, not on raw speech signals, but on “features” extracted from the signals, which are designed to capture information that could help discriminate whispers from normal speech.

In our paper, we compare the performance of two different neural nets on the whisper detection task. One is a relatively simple, feed-forward network known as a multilayer perceptron (MLP), and the second is a more sophisticated long short-term memory (LSTM) network.

The models are trained on two categories of features. One is log filter-bank energies, a fairly direct representation of the speech signal that records the signal energies in different frequency ranges. The other is a set of features specifically engineered to exploit the signal differences between whispered and normal speech.

We found that an LSTM network that doesn’t use handcrafted features performs as well as an MLP that does, indicating that LSTMs are capable of learning which signal attributes are most useful for whisper detection. In the paper, we also report an experiment in which the LSTM received the handcrafted features as well as the log filter-bank energies, and its performance improved still further.

After the paper’s acceptance, however, we found that the more data the LSTM saw, the less of an improvement the handcrafted features provided, until the difference evaporated. So the model we moved into production doesn’t use the handcrafted features at all.

There are several advantages to this approach. One is that other components of Alexa’s speech recognition system rely solely on log filter-bank energies. Using the same inputs for different components makes the system as a whole more compact, which is crucial if it is to be used offline, as we envision it will be.

Another advantage is that the handcrafted features are tailored to the data that we’ve seen so far. One of the features we used in our paper, for instance, is the ratio of the energy in the 6,875- to 8,000-hertz frequency band to that in the 310- to 620-hertz band. But it might be that, as we see more training data from more diverse populations, we find that ratios of energies in different frequency bands work better. A network that can learn features on its own is more scalable and can adapt more readily to new data.

LSTMs are widely used in speech recognition and natural-language understanding because they process inputs in sequential order, and their judgments about any given input are conditioned by what they’ve already seen.

This can pose a problem for whisper detection, however. In our system, before passing to the LSTM, the input utterance is broken into overlapping 25-millisecond segments called “frames”, which the LSTM processes in sequence. Because the LSTM’s output for a given frame reflects its outputs for the preceding frames, its confidence in its classifications tends to increase as the utterance progresses.

In a process called “end-pointing”, however, Alexa recognizes the end of an utterance by the short period of silence that follows end of speech, and that silence is part of the input to the whisper detector. When we apply the detector to live data, we typically see that its confidence increases across most of the duration of an utterance then falls off precipitously in the final 50 or so frames.

A graph of our whisper detector’s confidence in its classification (y-axis), across the duration of a single utterance (x-axis)
A graph of our whisper detector’s confidence in its classification (y-axis), across the duration of a single utterance (x-axis)

In the experiments reported in the paper, we tried to solve this problem in several different ways. One was to average the LSTM’s outputs for the entire utterance; one was to drop the last 50 frames and average what was left; and the third was to drop the last 50 frames and average only the preceding 100 frames, when the LSTM’s confidence should be at its peak.

Unexpectedly, averaging the entire signal — including the troublesome final 50 frames — yielded the best results. We suspect, however, that that’s because the samples of whispered speech that we used in our experiments were manually segmented, while the samples of normal speech were automatically segmented, using Alexa’s production end-pointer. There could be some consistent difference between manual and automatic segmentation that the system was actually exploiting to distinguish the two types of input, and dropping the final 50 frames made that difference more difficult to detect.

Nevertheless, in production, where both whispered speech and normal speech are segmented by the end-pointer, we’ve found that dropping the final 50 frames of data is crucial to maintaining performance and that averaging across a subset of the preceding frames, rather than the whole remaining signal, yields the best results.

Acknowledgments: Kellen Gillespie, Chengyuan Ma, Thomas Drugman, Jiacheng Gu, Roland Maas, Ariya Rastrow, Björn Hoffmeister

Related content

US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. The Research Science team at Amazon Robotics is seeking interns with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, planning/scheduling, and reinforcement learning. As an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, TX, Austin
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Applied Scientist IILocation: Austin, TexasPosition Responsibilities:Participate in the design, development, evaluation, deployment and updating of data-driven models and analytical solutions for machine learning (ML) and/or natural language (NL) applications. Develop and/or apply statistical modeling techniques (e.g. Bayesian models and deep neural networks), optimization methods, and other ML techniques to different applications in business and engineering. Routinely build and deploy ML models on available data. Research and implement novel ML and statistical approaches to add value to the business. Mentor junior engineers and scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000