A quick guide to Amazon's papers at Interspeech 2023

Speech recognition predominates, but Amazon's research takes in data representation, dialogue management, question answering, and more.

Amazon's papers at Interspeech 2023, sorted by research topic.

Automatic speech recognition

A metric-driven approach to conformer layer pruning for efficient ASR inference
Dhanush Bekal, Karthik Gopalakrishnan, Karel Mundnich, Srikanth Ronanki, Sravan Bodapati, Katrin Kirchhoff

Conmer: Streaming Conformer without self-attention for interactive voice assistants
Martin Radfar, Paulina Lyskawa, Brandon Trujillo, Yi Xie, Kai Zhen, Jahn Heymann, Denis Filimonov, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

DCTX-Conformer: Dynamic context carry-over for low latency unified streaming and non-streaming Conformer
Goeric Huybrechts, Srikanth Ronanki, Xilai Li, Hadis Nosrati, Sravan Bodapati, Katrin Kirchhoff

Distillation strategies for discriminative speech recognition rescoring
Prashanth Gurunath Shivakumar, Jari Kolehmainen, Yi Gu, Ankur Gandhe, Ariya Rastrow, Ivan Bulyko

Effective training of attention-based contextual biasing adapters with synthetic audio for personalised ASR
Burin Naowarat, Philip Harding, Pasquale D'Alterio, Sibo Tong, Bashar Awwad Shiekh Hasan

Human transcription quality improvement
Jian Gao, Hanbo Sun, Cheng Cao, Zheng Du

Human transcription quality.png
In “Human transcription quality improvement”, Amazon researchers use machine learning models to align and score multiple transcription hypotheses from crowd workers.

Learning when to trust which teacher for weakly supervised ASR
Aakriti Agrawal, Milind Rao, Anit Kumar Sahu, Gopinath (Nath) Chennupati, Andreas Stolcke

Model-internal slot-triggered biasing for domain expansion in neural transducer ASR models
Edie Lu, Philip Harding, Kanthashree Mysore Sathyendra, Sibo Tong, Xuandi Fu, Jing Liu, Feng-Ju (Claire) Chang, Simon Wiesler, Grant Strimel

Multi-view frequency-attention alternative to CNN frontends for automatic speech recognition
Belen Alastruey Lasheras, Lukas Drude, Jahn Heymann, Simon Wiesler

Multilingual contextual adapters to improve custom word recognition in low-resource languages
Devang Kulshreshtha, Saket Dingliwal, Brady Houston, Sravan Bodapati

Multilingual contextual adapters.png
Multilingual contextual adapters to improve custom word recognition in low-resource languages” proposes a three-stage process for training multilingual contextual adapters. Stage I trains a multilingual encoder; stage II learns multilingual contextual adapters by freezing the encoder; and stage III jointly optimizes both components on the target language.

PATCorrect: Non-autoregressive phoneme-augmented transformer for ASR error correction
Ziji Zhang, Zhehui Wang, Raj Kamma, Sharanya Eswaran, Narayanan Sadagopan

Personalization for BERT-based discriminative speech recognition rescoring
Jari Kolehmainen, Yi Gu, Aditya Gourav, Prashanth Gurunath Shivakumar, Ankur Gandhe, Ariya Rastrow, Ivan Bulyko

Personalized predictive ASR for latency reduction in voice assistants
Andreas Schwarz, Di He, Maarten Van Segbroeck, Mohammed Hethnawi, Ariya Rastrow

Record deduplication for entity distribution modeling in ASR transcripts
Tianyu Huang, Chung Hoon Hong, Carl Wivagg, Kanna Shimizu

Scaling laws for discriminative speech recognition rescoring models
Yi Gu, Prashanth Gurunath Shivakumar, Jari Kolehmainen, Ankur Gandhe, Ariya Rastrow, Ivan Bulyko

Selective biasing with trie-based contextual adapters for personalised speech recognition using neural transducers
Philip Harding, Sibo Tong, Simon Wiesler

Streaming speech-to-confusion network speech recognition
Denis Filimonov, Prabhat Pandey, Ariya Rastrow, Ankur Gandhe, Andreas Stolcke

Data representation

Don’t stop self-supervision: Accent adaptation of speech representations via residual adapters
Anshu Bhatia, Sanchit Sinha, Saket Dingliwal, Karthik Gopalakrishnan, Sravan Bodapati, Katrin Kirchhoff

Dialogue management

Parameter-efficient low-resource dialogue state tracking by prompt tuning
Mingyu Derek Ma, Jiun-Yu Kao, Shuyang Gao, Arpit Gupta, Di Jin, Tagyoung Chung, Violet Peng

Parameter efficient low resource dialogue state tracking.png
Parameter-efficient low-resource dialogue state tracking by prompt tuning” proposes a method for using language-model prompts to do dialogue state tracking, with a separate, fixed-length embedding for each input segment.

Grapheme-to-phoneme conversion

Improving grapheme-to-phoneme conversion by learning pronunciations from speech recordings
Sam Ribeiro, Giulia Comini, Jaime Lorenzo Trueba

Keyword spotting

On-device constrained self-supervised speech representation learning for keyword spotting via knowledge distillation
Gene-Ping Yang, Yue Gu, Qingming Tang, Dongsu Du, Yuzong Liu

Natural-language understanding

Quantization-aware and tensor-compressed training of transformers for natural language understanding
Zi Yang, Samridhi Choudhary, Siegfried Kunzmann, Zheng Zhang

Sampling bias in NLU models: Impact and mitigation
Zefei Li, Anil Ramakrishna, Anna Rumshisky, Andy Rosenbaum, Saleh Soltan, Rahul Gupta

Understanding disrupted sentences using underspecified abstract meaning representation
Angus Addlesee, Marco Damonte

Paralinguistics

Towards paralinguistic-only speech representations for end-to-end speech emotion recognition
George Ioannides, Michael Owen, Andrew Fletcher, Viktor Rozgic, Chao Wang

Utility-preserving privacy-enabled Speech embeddings for emotion detection
Chandrashekhar Lavania, Sanjiv Das, Xin Huang, Kyu Han

Question answering

Question content alignment.png
In “Question-context alignment and answer-context dependencies for effective answer sentence selection,” Amazon researchers propose a method that uses the sentences surrounding answer candidates as additional context. Given probability distributions over sequences of words, the method aligns questions with answer candidates and context by using optimal transport to move probability from one distribution to another.

Question-context alignment and answer-context dependencies for effective answer sentence selection
Minh Van Nguyen, Kishan K C, Toan Nguyen, Thien Nguyen, Ankit Chadha, Thuy Vu

Speaker diarization

Lexical speaker error correction: Leveraging language models for speaker diarization error correction
Rohit Paturi, Sundararajan Srinivasan, Xiang Li

Speech translation

Knowledge distillation on joint task end-to-end speech translation

Khandokar Md. Nayem, Ran Xue, Ching-Yun (Frannie) Chang, Akshaya Vishnu Kudlu Shanbhogue

Text-to-speech

Comparing normalizing flows and diffusion models for prosody and acoustic modelling in text-to-speech
Guangyang Zhang, Tom Merritt, Sam Ribeiro, Biel Tura Vecino, Kayoko Yanagisawa, Kamil Pokora, Abdelhamid Ezzerg, Sebastian Cygert, Ammar Abbas, Piotr Bilinski, Roberto Barra-Chicote, Daniel Korzekwa, Jaime Lorenzo Trueba

Cross-lingual prosody transfer for expressive machine dubbing
Jakub Swiatkowski, Duo Wang, Mikolaj Babianski, Patrick Tobing, Ravi chander Vipperla, Vincent Pollet

Diffusion-based accent modelling in speech synthesis
Kamil Deja, Georgi Tinchev, Marta Czarnowska, Marius Cotescu, Jasha Droppo

eCat: An end-to-end model for multi-speaker TTS & many-to-many fine-grained prosody transfer
Ammar Abbas, Sri Karlapati, Bastian Schnell, Penny Karanasou, Marcel Granero Moya, Amith Nagaraj, Ayman Boustati, Nicole Peinelt, Alexis Moinet, Thomas Drugman

Expressive machine dubbing through phrase-level cross-lingual prosody transfer
Jakub Swiatkowski, Duo Wang, Mikolaj Babianski, Giuseppe Coccia, Patrick Tobing, Ravi chander Vipperla, Viacheslav Klimkov, Vincent Pollet

Expressive machine dubbing.png
The architecture proposed in “Expressive machine dubbing through phrase-level cross-lingual prosody transfer” relies on a reference encoder that explicitly models noise.

Multilingual context-based pronunciation learning for text-to-speech
Giulia Comini, Sam Ribeiro, Fan Yang, Heereen Shim, Jaime Lorenzo Trueba

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.