A quick guide to Amazon’s papers at ACL 2024

Work on large language models predominates, with a particular focus on model evaluation.

Like the field of conversational AI in general, Amazon’s papers at this year’s meeting of the Association for Computational Linguistics (ACL) are dominated by work on large language models (LLMs). The properties that make LLMs’ outputs so extraordinary — such as their linguistic fluency and semantic coherence — are also notoriously difficult to quantify; as such, model evaluation has emerged as a particular area of focus. But Amazon’s papers explore a wide range of LLM-related topics, from applications such as code synthesis and automatic speech recognition to problems of LLM training and deployment, such as continual pretraining and hallucination mitigation. Papers accepted to the recently inaugurated Proceedings of the ACL are marked with asterisks.

Code synthesis

Fine-tuning language models for joint rewriting and completion of code with potential bugs
Dingmin Wang, Jinman Zhao, Hengzhi Pei, Samson Tan, Sheng Zha

Bug injection.png
Obtaining buggy partial code via bug injection. From “Fine-tuning language models for joint rewriting and completion of code with potential bugs”.

Continual pretraining

Efficient continual pre-training for building domain specific large language models*
Yong Xie, Karan Aggarwal, Aitzaz Ahmad

Data quality

A shocking amount of the web is machine translated: Insights from multi-way parallelism*
Brian Thompson, Mehak Dhaliwal, Peter Frisch, Tobias Domhan, Marcello Federico

Document summarization

The power of summary-source alignments
Ori Ernst, Ori Shapira, Aviv Slobodkin, Sharon Adar, Mohit Bansal, Jacob Goldberger, Ran Levy, Ido Dagan

Hallucination mitigation

Learning to generate answers with citations via factual consistency models
Rami Aly, Zhiqiang Tang, Samson Tan, George Karypis

Intent classification

Can your model tell a negation from an implicature? Unravelling challenges with intent encoders
Yuwei Zhang, Siffi Singh, Sailik Sengupta, Igor Shalyminov, Hwanjun Song, Hang Su, Saab Mansour

Irony recognition

MultiPICo: Multilingual perspectivist irony corpus
Silvia Casola, Simona Frenda, Soda Marem Lo, Erhan Sezerer, Antonio Uva, Valerio Basile, Cristina Bosco, Alessandro Pedrani, Chiara Rubagotti, Viviana Patti, Davide Bernardi

Knowledge grounding

Graph chain-of-thought: Augmenting large language models by reasoning on graphs
Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng Tang, Suhang Wang, Yu Meng, Jiawei Han

MATTER: Memory-augmented transformer using heterogeneous knowledge sources*
Dongkyu Lee, Chandana Satya Prakash, Jack G. M. FitzGerald, Jens Lehmann

Tree-of-traversals: A zero-shot reasoning algorithm for augmenting black-box language models with knowledge graphs
Elan Markowitz, Anil Ramakrishna, Jwala Dhamala, Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-Wei Chang, Aram Galstyan

Tree of traversals.png
An example of how the tree-of-traversals method uses a knowledge graph interface for the query “What actor played in both Inception and Interstellar?” From "Tree-of-traversals: A zero-shot reasoning algorithm for augmenting black-box language models with knowledge graphs".

LLM decoding

BASS: Batched attention-optimized speculative sampling*
Haifeng Qian, Sujan Gonugondla, Sungsoo Ha, Mingyue Shang, Sanjay Krishna Gouda, Ramesh Nallapati, Sudipta Sengupta, Anoop Deoras

Machine translation

Impacts of misspelled queries on translation and product search
Greg Hanneman, Natawut Monaikul, Taichi Nakatani

The fine-tuning paradox: Boosting translation quality without sacrificing LLM abilities
David Stap, Eva Hasler, Bill Byrne, Christof Monz, Ke Tran

Model editing

Propagation and pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks
Wenyue Hua, Jiang Guo, Marvin Dong, Henghui Zhu, Patrick Ng, Zhiguo Wang

ReCoE construction.png
Demonstration of the process used to construct data for the reasoning-based counterfactual-editing (ReCoE) dataset. Straight lines represent data sourced from existing datasets; dashed lines denote data derived from LLM generation; zigzag lines denote data obtained through the corruption of other data. From "Propagation and pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks".

Model evaluation

Bayesian prompt ensembles: Model uncertainty estimation for black-box large language models
Francesco Tonolini, Jordan Massiah, Nikolaos Aletras, Gabriella Kazai

ConSiDERS—the-human evaluation framework: Rethinking human evaluation for generative large language models
Aparna Elangovan, Ling Liu, Lei Xu, Sravan Bodapati, Dan Roth

Factual confidence of LLMs: On reliability and robustness of current estimators
Matéo Mahaut, Laura Aina, Paula Czarnowska, Momchil Hardalov, Thomas Müller, Lluís Marquez

Fine-tuned machine translation metrics struggle in unseen domains
Vilém Zouhar, Shuoyang Ding, Anna Currey, Tatyana Badeka, Jenyuan Wang, Brian Thompson

Measuring question answering difficulty for retrieval-augmented generation
Matteo Gabburo, Nicolaas Jedema, Siddhant Garg, Leonardo Ribeiro, Alessandro Moschitti

Model robustness

Extreme miscalibration and the illusion of adversarial robustness
Vyas Raina, Samson Tan, Volkan Cevher, Aditya Rawal, Sheng Zha, George Karypis

Multimodal models

CaMML: Context-aware multimodal learner for large models
Yixin Chen, Shuai Zhang, Boran Han, Tong He, Bo Li

CAMML.png
The CaMML framework, which consists of a retriever, a perceiver and a generator. After receiving user query q, the CaMML retriever identifies relevant multimodal contexts C from the data store. Then the CaMML perceiver seamlessly integrates data of various modalities, effectively encoding long-context information and injecting it into the CaMML generator. This enables the prediction of responses that are conditioned on both the context and the query. From "CaMML: Context-aware multimodal learner for large models".

Multi-modal retrieval for large language model based speech recognition
Jari Kolehmainen, Aditya Gourav, Prashanth Gurunath Shivakumar, Yi Gu, Ankur Gandhe, Ariya Rastrow, Grant Strimel, Ivan Bulyko

REFINESUMM: Self-refining MLLM for generating a multimodal summarization dataset
Vaidehi Patil, Leonardo Ribeiro, Mengwen Liu, Mohit Bansal, Markus Dreyer

Ordinal classification

Exploring ordinality in text classification: A comparative study of explicit and implicit techniques
Siva Rajesh Kasa, Aniket Goel, Sumegh Roychowdhury, Karan Gupta, Anish Bhanushali, Nikhil Pattisapu, Prasanna Srinivasa Murthy

Question answering

Beyond boundaries: A human-like approach for question answering over structured and unstructured information sources*
Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, Sahar Vahdati

MinPrompt: Graph-based minimal prompt data augmentation for few-shot question answering
Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Wei Wang

Synthesizing conversations from unlabeled documents using automatic response segmentation
Fanyou Wu, Weijie Xu, Chandan Reddy, Srinivasan Sengamedu, "SHS"

Reasoning

Eliciting better multilingual structured reasoning from LLMs through code
Bryan Li, Tamer Alkhouli, Daniele Bonadiman, Nikolaos Pappas, Saab Mansour

II-MMR: Identifying and improving multi-modal multi-hop reasoning in visual question answering*
Jihyung Kil, Farideh Tavazoee, Dongyeop Kang, Joo-Kyung Kim

Recommender systems

Generative explore-exploit: Training-free optimization of generative recommender systems using LLM optimizers
Besnik Fetahu, Zhiyu Chen, Davis Yoshida, Giuseppe Castellucci, Nikhita Vedula, Jason Choi, Shervin Malmasi

Towards translating objective product attributes into customer language
Ram Yazdi, Oren Kalinsky, Alexander Libov, Dafna Shahaf

Responsible AI

SpeechGuard: Exploring the adversarial robustness of multimodal large language models
Raghuveer Peri, Sai Muralidhar Jayanthi, Srikanth Ronanki, Anshu Bhatia, Karel Mundnich, Saket Dingliwal, Nilaksh Das, Zejiang Hou, Goeric Huybrechts, Srikanth Vishnubhotla, Daniel Garcia-Romero, Sundararajan Srinivasan, Kyu Han, Katrin Kirchhoff

Text completion

Token alignment via character matching for subword completion*
Ben Athiwaratkun, Shiqi Wang, Mingyue Shang, Yuchen Tian, Zijian Wang, Sujan Gonugondla, Sanjay Krishna Gouda, Rob Kwiatkowski, Ramesh Nallapati, Bing Xiang

Token alignment.png
An illustration of token alignment process presented in "Token alignment via character matching for subword completion".

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques