A quick guide to Amazon's 40+ papers at EMNLP 2023

Research on natural-language understanding seeks to harness the power of large language models, while query reformulation and text summarization emerge as topics of particular interest.

Natural-language understanding (NLU) has long been a central focus of the papers that Amazon researchers publish at the Conference on Empirical Methods in Natural-Language Processing (EMNLP), but at this year's conference, which starts today, Amazon's NLU research shows a particular interest in harnessing the power of large language models (LLMs). Question answering also remains an active research topic, while query reformulation and text summarization emerge as new areas of concentration.

Automatic speech recognition

AdaBERT-CTC: Leveraging BERT-CTC for text-only domain adaptation in ASR
Tyler Vuong, Karel Mundnich, Dhanush Bekal, Veera Raghavendra Elluru, Srikanth Ronanki, Sravan Bodapati

Continual learning

Coordinated replay sample selection for continual federated learning
Jack Good, Jimit Majmudar, Christophe Dupuy, Jixuan Wang, Charith Peris, Clement Chung, Richard Zemel, Rahul Gupta 

Data extraction

InsightNet: Structured insight mining from customer feedback
Sandeep Mukku, Manan Soni, Chetan Aggarwal, Jitenkumar Rana, Promod Yenigalla, Rashmi Patange, Shyam Mohan

Knowledge-selective pretraining for attribute value extraction
Hui Liu, Qingyu Yin, Zhengyang Wang, Chenwei Zhang, Haoming Jiang, Yifan Gao, Zheng Li, Xian Li, Chenwei Zhang, Bing Yin, William Wang, Xiaodan Zhu

Data selection

Influence scores at scale for efficient language data sampling
Nikhil Anand, Joshua Tan, Maria Minakova

Document understanding

A multi-modal multilingual benchmark for document image classification
Yoshinari Fujinuma, Siddharth Varia, Nishant Sankaran, Bonan Min, Srikar Appalaraju, Yogarshi Vyas

Semantic matching for text classification with complex class descriptions
Brian de Silva, Kuan-Wen Huang, Gwang Lee, Karen Hovsepian, Yan Xu, Mingwei Shen

Embodied task completion

Multimodal embodied plan prediction augmented with synthetic embodied dialogue
Aishwarya Padmakumar, Mert Inan, Spandana Gella, Patrick Lange, Dilek Hakkani-Tür

Entity linking

MReFinED: An efficient end-to-end multilingual entity linking system
Peerat Limkonchotiwat, Weiwei Cheng, Christos Christodoulopoulos, Amir Saffari, Jens Lehmann

Few-shot learning

Automated few-shot classification with instruction-finetuned language models
Rami Aly, Xingjian Shi, Kaixiang Lin, Aston Zhang, Andrew Wilson

AuT-Few.png
A schematic view of the Aut-Few prompt automation method. From "Automated few-shot classification with instruction-finetuned language models".

Information retrieval

Deep metric learning to hierarchically rank—An application in product retrieval
Kee Kiat Koo, Ashutosh Joshi, Nishaanth Reddy, Ismail Tutar, Vaclav Petricek, Changhe Yuan, Karim Bouyarmane

KD-Boost: Boosting real-time semantic matching in e-commerce with knowledge distillation
Sanjay Agrawal, Vivek Sembium, Ankith M S

CESAR.png
The CESAR framework automatically merges compound tasks — such as, in this example, keyword-controlled generation and act-grounded generation. From "CESAR: Automatic induction of compositional instructions for multi-turn dialogs".

Multi-teacher distillation for multilingual spelling correction
Jingfen Zhang, Xuan Guo, Sravan Bodapati, Christopher Potts

Instruction tuning

CESAR: Automatic induction of compositional instructions for multi-turn dialogs
Taha Aksu, Devamanyu Hazarika, Shikib Mehri, Seokhwan Kim, Dilek Hakkani-Tür, Yang Liu, Mahdi Namazifar

LLM hallucination

INVITE: A testbed of automatically generated invalid questions to evaluate large language models for hallucinations
Anil Ramakrishna, Rahul Gupta, Jens Lehmann, Morteza Ziyadi

Machine learning

Efficient long-range transformers: You need to attend more, but not necessarily at every layer
Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, Tuo Zhao

Natural-language processing

NameGuess: Column name expansion for tabular data
Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Shen Wang, Huzefa Rangwala, George Karypis

Natural-language understanding

Adversarial robustness for large-language NER models using disentanglement and word attributions
Xiaomeng Jin, Bhanu Vinzamuri, Sriram Venkatapathy, Heng Ji, Pradeep Natarajan

Measuring and mitigating dialog-to-API constraint violations of in-context learning
Shufan Wang, Sebastien Jean, Sailik Sengupta, James Gung, Nikolaos Pappas, Yi Zhang

Intent classification.png
Overview of the pretraining of an intent-aware encoder. Given an utterance, x1, from the pretraining corpus, Amazon researchers generate a pseudo intent name, y1pseudo, using labels from the intent-role-labeling (IRL) tagger. The model is then optimized by pulling the gold utterance x1gold, the gold intent y1, and the pseudo intent, y1pseudo, close to the input utterance, x1, in the embedding space. From "Pre-training intent-aware encoders for zero- and few-shot intent classification".

MultiCoNER v2: A large multilingual dataset for fine-grained and noisy named entity recognition
Besnik Fetahu, Zhiyu Chen, Sudipta Kar, Oleg Rokhlenko, Shervin Malmasi

Pre-training intent-aware encoders for zero- and few-shot intent classification
Mujeen Sung, James Gung, Elman Mansimov, Nikolaos Pappas, Raphael Shu, Salvatore Romeo, Yi Zhang, Vittorio Castelli

Personalization

Personalized dense retrieval on global index for voice-enabled conversational systems
Masha Belyi, Charlotte Dzialo, Chaitanya Dwivedi, Prajit Reddy Muppidi, Kanna Shimizu

Retrieve and copy: Scaling ASR personalization to large catalogs
Sai Muralidhar Jayanthi, Devang Kulshreshtha, Saket Dingliwal, Srikanth Ronanki, Sravan Bodapati

Query reformulation

CL-QR: Cross-lingual enhanced query reformulation for multi-lingual conversational AI agents
Zhongkai Sun, Zhengyang Zhao, Sixing Lu, Chengyuan Ma, Xiaohu Liu, Xing Fan, Wei (Sawyer) Shen, Chenlei (Edward) Guo

Graph meets LLM: A novel approach to collaborative filtering for robust conversational understanding
Zheng Chen, Ziyan Jiang, Fan Yang, Eunah Cho, Xing Fan, Xiaojiang Huang, Yanbin Lu, Aram Galstyan

Improving contextual query rewrite for conversational AI agents through user-preference feedback learning
Zhongkai Sun, Yingxue Zhou, Jie Hao, Xing Fan, Yanbin Lu, Chengyuan Ma, Wei (Sawyer) Shen, Chenlei (Edward) Guo

Question-answer databases

Protege: Prompt-based diverse question generation from web articles
Vinayak Puranik, Anirban Majumder, Vineet Chaoji

QUADRo: Dataset and models for question-answer database retrieval
Stefano Campese, Ivano Lauriola, Alessandro Moschitti

Question answering

Strong and efficient baselines for open domain conversational question answering
Andrei C. Coman, Gianni Barlacchi, Adrià de Gispert

Tokenization consistency matters for generative models on extractive NLP tasks
Kaiser Sun, Peng Qi, Yuhao Zhang, Lan Liu, William Yang Wang, Zhiheng Huang

Too much of product information: Don’t worry, let’s look for evidence!
Aryan Jain, Jitenkumar Rana, Chetan Aggarwal

Reasoning

Plan, verify and switch: Integrated reasoning with diverse x-of-thoughts
Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun Hu, Yue Zhang, Xipeng Qiu, Zheng Zhang 

XOT.png
An overview of the x-of-thought (XoT) problem-solving framework, which integrates chain-of-thought (CoT) and program-of-thought (PoT) methods with the researchers' novel equation-of-thought (EoT) approach. From "Plan, verify and switch: Integrated reasoning with diverse x-of-thoughts".

Responsible AI

Geographical erasure in language generation
Pola Schwöbel, Jacek Golebiowski, Michele Donini, Cédric Archambeau, Danish Pruthi

Speech translation

End-to-end single-channel speaker-turn aware conversational speech translation
Juan Pablo Zuluaga Gomez, Zhaocheng Huang, Xing Niu, Rohit Paturi, Sundararajan Srinivasan, Prashant Mathur, Brian Thompson, Marcello Federico

Text summarization

Enhancing abstractiveness of summarization models through calibrated distillation
Hwanjun Song, Igor Shalyminov, Hang Su, Siffi Singh, Kaisheng Yao, Saab Mansour

Generating summaries with controllable readability levels
Leonardo Ribeiro, Mohit Bansal, Markus Dreyer

Improving consistency for text summarization with energy functions
Qi Zeng, Qingyu Yin, Zheng Li, Yifan Gao, Sreyashi Nag, Zhengyang Wang, Bing Yin, Heng Ji, Chao Zhang

InstructPTS: Instruction-tuning LLMs for product title summarization
Besnik Fetahu, Zhiyu Chen, Oleg Rokhlenko, Shervin Malmasi

Multi document summarization evaluation in the presence of damaging content
Avshalom Manevich, David Carmel, Nachshon Cohen, Elad Kravi, Ori Shapira

Re-examining summarization evaluation across multiple quality criteria
Ori Ernst, Ori Shapira, Ido Dagan, Ran Levy

Topic modeling

DeTiME: Diffusion-enhanced topic modeling using encoder-decoder based LLM
Weijie Xu, Wenxiang Hu, Fanyou Wu, Srinivasan Sengamedu, "SHS"

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.