Maryam Aziz is seen standing outside, smiling into the camera
Maryam Aziz is a master's student studying computer engineering at Columbia University. She was also part of the inaugural Columbia-Amazon Summer Undergraduate Research Experience (SURE) class. She said her experience with SURE helped her decide what she wanted to study.
Courtesy of Maryam Aziz

Master’s student Maryam Aziz uses SURE opportunity to explore social impact of machine learning

The alumna of the 2021 Columbia SURE Amazon cohort becomes the first Amazon MS Fellow at Columbia.

As a junior at the University of Connecticut (UConn), Maryam Aziz began looking at summer research programs in her field of computer science. She planned to gain some research experience to round out her resume in the hopes of applying to PhD programs after graduation. One program in particular caught her eye.

The Columbia-Amazon Summer Undergraduate Research Experience (SURE) provides research opportunities for undergraduate students from historically underrepresented backgrounds in STEM. Created as a partnership between Columbia University Engineering and Amazon, the initiative launched in 2021 as an eight-week summer research and professional development program.

SURE students engage in cutting-edge research and explore foundational research in areas of artificial intelligence, material science, computational science and engineering, as well as confronting challenges in medicine, climate, sustainability, business, and other areas. They also meet with leading experts from Amazon to learn about real-world scientific and technical challenges.

Related content
Seventy-four percent of surveyed undergraduates in Columbia-Amazon program say it exceeded or far exceeded expectations.

“When you hear ‘Columbia,’ you think groundbreaking research,” Aziz said. “They have a lot of funding for research, and I knew Amazon put a lot of funding into these labs too. I thought it would definitely be groundbreaking, different than anything I’ve seen.”

Aziz was part of SURE’s inaugural class. The program, which took place on Columbia’s campus in New York City, offered 26 students from 12 US states and territories the opportunity to participate in cutting-edge research projects alongside Columbia University professors with additional mentorship from Amazon scientists.

With funding from Amazon that Columbia matches, SURE covers room and board, basic healthcare, a weekly stipend, and a travel reimbursement for the selected students.

Maryam Aziz is seen standing at a podium, she is smiling toward the camera, in the background is a display screen that says 'Columbia University 2022 Amazon SURE Day'
Maryam Aziz said SURE events at Columbia, like the one she is seen attending here, helped her realize that fairness in AI is a subject she would like to pursue in her studies.

“We had events that included industry and academia where we had professors from Columbia and people from Amazon that had done their PhDs too but decided not to go into academia specifically,” said Aziz. “Events like that were helpful. And I don't think I would've gotten that anywhere else.”

Working with Columbia assistant professor Brian Smith, Aziz’s research centered around the development of a navigation assistance system for the blind that used computer vision technology to map indoor areas.

Aziz worked on data visualizations as well as data analysis that contributed to the creation of 3D maps for the system. Along with Smith and others at Columbia’s Computer-Enabled Abilities Laboratory (CEAL), Aziz also worked on the research paper “‘I Want to Figure Things Out’: Supporting Exploration in Navigation for People with Visual Impairments.”

As part of the SURE program, Aziz was also able to network with Amazon researchers. In particular, she recalled speaking with a senior manager in Amazon’s Alexa Artificial Intelligence (AI) Natural Understanding organization, Avni Fein.

Related content
Thirteen new projects focus on ensuring fairness in AI algorithms and the systems that incorporate them.

“There's a team at Amazon Alexa that works on fairness and AI, and that’s something that I didn't know about,” Aziz said. “So now I found out that's something that I would want to work on.”

After her 2018 graduation from public high school in Danbury, Connecticut, Aziz went on to study computational data analytics and mathematics at UConn. In the summer before her junior year, Aziz had interned at an aerospace company in a role that included data analysis and predictive modeling.

She became increasingly interested in the prospective social impacts of machine learning and artificial intelligence. To help acquire research experience, she decided to apply for the SURE program.

“I wanted to do something to help people,” Aziz said. “I was learning all these new skills, and I felt like I wanted to make a deeper impact.”

After participating in the SURE program over the summer of 2021, Aziz returned to UConn and earned her bachelor’s in computer science and engineering in May of this year. Encouraged by the opportunity to continue to work with Smith, Aziz decided to return to Columbia to pursue a master’s degree in computer science.

She was chosen as the first recipient of the Amazon MS Fellowship at Columbia Engineering, a program designed to increase the participation of underrepresented groups in graduate-level STEM disciplines. Amazon funds Aziz’s tuition and fees and provides her the opportunity to apply to intern with the company.

As a SURE alumna, Aziz had the chance to speak to current SURE students for Amazon Day in July 2022. “Don’t be afraid to fail,” Aziz told them. “Talk to as many people as you can. You never know what opportunities will come from that.”

Amazon has increased its commitment to the SURE program by expanding its partnership with Columbia, and by initiating new multi-year SURE programs with Georgia Tech and the University of Southern California.

Research areas

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Research Scientist with fabrication and data analysis experience working on all elements of a superconducting circuit. The position is on-site at our lab, located on the in Pasadena, CA. The ideal candidate will have had prior experience building software tools for data analysis and visualization to enable deep diving into fabrication details, electrical test data. We are looking for candidates with strong engineering principles, resourcefulness and data science experience. Organization and communication skills are essential. Key job responsibilities * Develop and automate data pipeline pertinent to superconducting device fabrication. * Develop analytical tools to uncover new information about established and new processes. * Develop new or contribute to modifying existing data visualization tools. * Utilize machine learning to enable better deeper dives into fabrication and related data. * Interface with various software, design, fabrication and electrical test teams to enable new functionalities. A day in the life The role will be vital to the fabrication team and quantum computing device integration mechanism. The candidate will develop software based analytical tools to enable data driven decisions across projects related to fabrication and supporting infrastructure. Each fabrication run delivers additional data. The candidate will stay close to the details of fabrication providing data analysis and quick feedback to key stakeholders. At the end of fabrication runs custom and standardized reports will be generated by the candidate to provide insights into data generated from the run. This position may require occasional weekend work. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with other talented applied scientists and engineers to research and develop LLM modeling and engineering techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering, Model Fine-Tuning, Reinforcement Learning from Human Feedback (RLHF), Evaluation, etc. Your work will directly impact our customers in the form of novel products and services .
US, WA, Bellevue
Amazon Devices Sales and Customer Experience is looking for a talented Applied Scientist to help invent, design, and deliver cutting-edge science solutions to make it easier for millions of customers to find their next Amazon Device they will love. In this role you will: - Be a part of a growing and vibrant team of scientists, economists, engineers, analysts, and business partners. - Use Amazon's large-scale computing and data resources to generate deep understandings of our customers, and products. - Build models to generate content and recommendations to customers; run them as large scale A/B tests directly on the retail website. - Design, implement, and deliver novel solutions to hard to solve problems. Key Performance Areas - Implement statistical or machine learning methods to solve specific business problems. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Directly contribute to development of modern automated recommendation systems - Build customer-facing reporting tools to provide insights and metrics to track model performance and explain variance - Collaborate with researchers, software developers, and business leaders to define product requirements, provide analytical support, and communicate feedback Key job responsibilities We are looking for an innovative, hands-on and customer-obsessed Scientist who can be a strategic partner to the product managers and engineers on the team. Our projects span multiple organizations and require coordination of experimentation, economic and causal analysis, and building predictive machine learning models. A successful candidate will be a problem solver who enjoys diving into data, is excited by difficult modeling challenges, is motivated to build something that will eventually become a production software system and possesses strong communication skills to effectively interface between technical and business teams. In this role, you will be a technical expert with massive impact. You will take the lead on developing advanced solutions that are key to reaching our customers with the right recommendations at the right time. Your work will directly impact the success of Amazon's growing Devices business. You will work across diverse science/engineering/business teams. You will work on critical science problems, building high quality, reliable, accurate, and consistent code sets that are aligned with our business needs. A day in the life You will work with other scientists, engineers, product managers, and marketers to develop new products that benefit our customers and help us reach our business goals. You will own solutions from end to end: conceptualization, prioritization, development and delivery. About the team We are a full stack science team that empowers product, marketing, and other business leaders to better understand customers who use Amazon devices, make decisions on product development or optimization, and measure the effectiveness of their efforts against our customer’s expectation. Our focus area is to build analytical frameworks that help the organization either access data, better understand the decisions customers are making and why, or assess customer satisfaction.
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As the Data Science Manager on this team, you will: - Lead of team of scientists, business intelligence engineers, etc., on solving science problems with a high degree of complexity and ambiguity. - Develop science roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers in the organization. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: - Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. - Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. - Lead marketplace design and development based on economic theory and data analysis. - Provide technical and scientific guidance to team members. - Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment - Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. - Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Collaborate with business and software teams across Amazon Ads. - Stay up to date with recent scientific publications relevant to the team. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, San Francisco
The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches