Customer-obsessed science


Research areas
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
Featured news
-
2024Many eCommerce systems source product information from millions of sellers and manufactures, each having their own proprietary schemas, and employ schema matching solutions to structure it to enable informative shopping experiences. Meanwhile, state-of-the-art machine translation techniques have demonstrated great success in building context-aware representations that generalize well to new languages with
-
Information-Seeking Dialogue (ISD) agents aim to provide accurate responses to user queries. While proficient in directly addressing user queries, these agents, as well as LLMs in general, predominantly exhibit reactive behavior, lacking the ability to generate proactive responses that actively engage users in sustained conversations. However, existing definitions of proactive dialogue in this context do
-
2024Query Autocomplete (QAC) is a critical feature in modern search engines, facilitating user interaction by predicting search queries based on input prefixes. Despite its widespread adoption, the absence of large-scale, realistic datasets has hindered advancements in QAC system development. This paper addresses this gap by introducing AmazonQAC, a new QAC dataset sourced from Amazon Search logs, comprising
-
In LLM alignment and many other ML applications, one often faces the MultiObjective Fine-Tuning (MOFT) problem, i.e. fine-tuning an existing model with datasets labeled w.r.t. different objectives simultaneously. To address the challenge, we propose the HyperDPO framework, a hypernetwork-based approach that extends the Direct Preference Optimization (DPO) technique, originally developed for efficient LLM
-
Understanding long-form video content presents significant challenges due to its temporal complexity and the substantial computational resources required. In this work, we propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding by utilizing large language models (LLMs) and their tool-harnessing ability. A key aspect of our method is queryadaptive
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all