Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 8, 20258 min read
-
December 5, 20256 min read
Featured news
-
WACV 2025 Workshop on Synthetic Realities and Data in Biometric Analysis and Security2025Diffusion models have revolutionized the landscape of generative AI, particularly in the application of text-to-image generation. However, their powerful capability of generating high-fidelity images raises significant security concerns on the malicious use of the state-of-the-art (SOTA) text-to-image diffusion models, notably the risks of misusing personal photos and copyright infringement through the
-
2025In this paper, we present HALLUCANA, a canary lookahead to detect and correct factuality hallucinations of Large Language Models (LLMs) in long-form generation. HALLUCANA detects and intervenes as soon as traces of hallucination emerge, during and even before generation. To support timely detection, we exploit the internal factuality representation in the LLM hidden space, where we investigate various proxies
-
2025General-purpose language models (LMs) are aligned to diverse user intents, but fall short when it comes to specific applications. While finetuning is the default method for customized alignment, human annotations are often unavailable in various customization scenarios. Based on the observation that one of the main issues of LM customization is constraint adherence, we investigate the feasibility of using
-
DVCON 20252025Machine Learning (ML) accelerators are increasingly adopting diverse datatypes and data formats, such as FP16 and microscaling, to optimize key performance metrics such as inference accuracy, latency and power consumption. However, hardware modules like the arithmetic units and signal processing blocks associated with these datatypes pose unique verification challenges. In this work, we present an end-to-end
-
2025Marked Temporal Point Process (MTPP) – the de-facto sequence model for continuous-time event sequences – historically employed for modeling human-generated action sequences, lack awareness of external stimuli. In this study, we propose a novel framework developed over Transformer Hawkes Process (THP) to incorporate external stimuli in a domain-agnostic manner. Furthermore, we integrate personalization into
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all