Customer-obsessed science


Research areas
-
February 27, 2025Prototype is the first realization of a scalable, hardware-efficient quantum computing architecture based on bosonic quantum error correction.
-
Featured news
-
2025Contrastive Learning (CL) proves to be effective for learning generalizable user representations in Sequential Recommendation (SR), but it suffers from high computational costs due to its reliance on negative samples. To overcome this limitation, we propose the first Non-Contrastive Learning (NCL) framework for SR, which eliminates computational overhead of identifying and generating negative samples. However
-
2025Large Language Models (LLMs), exemplified by Claude and LLama, have exhibited impressive proficiency in tackling a myriad of Natural Language Processing (NLP) tasks. Yet, in pursuit of the ambitious goal of attaining Artificial General Intelligence (AGI), there remains ample room for enhancing LLM capabilities. Chief among these is the pressing need to bolster long-context comprehension. Numerous real-world
-
2025Language models are aligned to the collective voice of many, resulting in generic out-puts that do not align with specific users’ styles. In this work, we present Trial-Error-Explain In-Context Learning (TICL), a tuning-free method that personalizes language models for text generation tasks with fewer than 10 examples per user. TICL iteratively expands an in-context learning prompt via a trial-error-explain
-
2025Due to the scarcity of agent-oriented pre-training data, LLM-based autonomous agents typically rely on complex prompting or extensive fine-tuning, which often fails to introduce new capabilities while preserving strong generalizability. We introduce Hephaestus-Forge, the first large-scale pre-training corpus designed to enhance the fundamental capabilities of LLM agents in API function calling, intrinsic
-
2025Large language models (LLMs) have achieved remarkable success in various natural language generation (NLG) tasks, but their performance in automatic text evaluation is not yet ready as human replacements. In this paper, we propose SEEval (Self-Explanation in Evaluation), a novel prompt-based text evaluator. Inspired by educational psychology, SEEval incorporates self-explanation, a metacognitive strategy
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all