Customer-obsessed science


Research areas
-
June 12, 2025Novel architecture that fuses learnable queries and conditional queries improves a segmentation model’s ability to transfer across tasks.
Featured news
-
2025Developing a face anti-spoofing model that meets the security requirements of clients worldwide is challenging due to the domain gap between training datasets and diverse end-user test data. Moreover, for security and privacy reasons, it is undesirable for clients to share a large amount of their face data with service providers. In this work, we introduce a novel method in which the face antispoofing model
-
2025Leveraging multiple large language models (LLMs) to build collaborative multi-agentic workflows has demonstrated significant potential. However, most previous studies focus on prompting the out-of-the-box LLMs, relying on their innate capability for collaboration, which may not improve LLMs’ performance as shown recently. In this paper, we introduce a new post-training paradigm MAPoRL (MultiAgent Post-co-training
-
2025Optimal prompt selection is crucial for maximizing large language model (LLM) performance on downstream tasks, especially in black-box settings where models are only accessible via APIs. Black-box prompt selection is challenging due to potentially large, combinatorial search spaces, absence of gradient information, and high evaluation cost of prompts on a validation set. We propose HbBoPs, a novel method
-
2025The rapid development of Large Language Models (LLMs) has led to their widespread adoption across various domains, leveraging vast pre-training knowledge and impressive generalization capabilities. However, these models often inherit biased knowledge, resulting in unfair decisions in sensitive applications. It is challenging to remove this biased knowledge without compromising reasoning abilities due to
-
ICLR 2025 Workshop on Data Problems2025The predominant approach for training web navigation agents gathers human demonstrations for a set of popular websites and hand-written tasks, but it is becoming clear that human data is an inefficient resource. We develop a pipeline to facilitate internet-scale training for agents without laborious human annotations. In the first stage, an LLM generates tasks for 150k diverse websites. In the next stage
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all