Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 8, 20258 min read
-
December 5, 20256 min read
Featured news
-
AISTATS 20242024Multi-objective optimization is a class of optimization problems with multiple conflicting objectives. We study offline optimization of multi-objective policies from data collected by a previously deployed policy. We propose a pessimistic estimator for policy values that can be easily plugged into existing formulas for hypervolume computation and optimized. The estimator is based on inverse propensity scores
-
AISTATS 20242024Active learning parallelization is widely used, but typically relies on fixing the batch size throughout experimentation. This fixed ap-proach is inefficient because of a dynamic trade-off between cost and speed—larger batches are more costly, smaller batches lead to slower wall-clock run-times—and the trade-off may change over the run (larger batches are often preferable earlier). To address this trade-off
-
ICLR 2024 Workshop on Data-centric Machine Learning Research2024The transformer is a powerful data-modeling framework responsible for remarkable performance on a wide range of tasks. However, transformers are limited in terms of scalability as it is suboptimal and inefficient to process long-sequence data. To this purpose we introduce BLRP (Bidirectional Long-Range Parser), a novel and versatile attention mechanism designed to increase performance and efficiency on
-
The Web Conference 2024 Workshop on Information Retrieval Meets Large Language Models2024Retrieval and ranking lie at the heart of several applications like search, question-answering, and recommendations. The use of Large language models (LLMs) such as BERT in these applications have shown promising results in recent times. Recent works on text-based retrievers and rankers show promising results by using bi-encoders (BE) architecture with BERT like LLMs for retrieval and a cross-attention
-
ICDE 20242024How can we effectively generate missing data transformations among tables in a data repository? Multiple versions of the same tables are generated from the iterative process when data scientists and machine learning engineers fine-tune their ML pipelines, making incremental improvements. This process often involves data transformation and augmentation that produces an augmented table based on its base version
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all