Customer-obsessed science


Research areas
-
June 25, 2025With large datasets, directly generating data ID codes from query embeddings is much more efficient than performing pairwise comparisons between queries and candidate responses.
Featured news
-
2025Recent advances in Multi-Modal Large Language Models (M-LLMs) show promising results in video reasoning. Popular Multi-Modal Large Language Model (M-LLM) frameworks usually apply naive uniform sampling to reduce the number of video frames that are fed into an M-LLM, particularly for long context videos. However, it could lose crucial context in certain periods of a video, so that the downstream M-LLM may
-
2025While retrieval-augmented generation (RAG) has been shown to enhance factuality of large language model (LLM) outputs, LLMs still suffer from hallucination, generating incorrect or irrelevant information. A common detection strategy involves prompting the LLM again to assess whether its response is grounded in the retrieved evidence, but this approach is costly. Alternatively, lightweight natural language
-
OOPSLA 20252025Software updates, including bug repair and feature additions, are frequent in modern applications but they often leave test suites outdated, resulting in undetected bugs and increased chances of system failures. A recent study by Meta revealed that 14%-22% of software failures stem from outdated tests that fail to reflect changes in the codebase. This highlights the need to keep tests in sync with code
-
NeurIPS 2024 Workshop on Tackling Climate Change with Machine Learning, Environmental Science and Technology2025Accurately quantifying greenhouse gas (GHG) emissions is crucial for organizations to measure and mitigate their environmental impact. Life cycle assessment (LCA) estimates the environmental impacts throughout a product’s entire lifecycle, from raw material extraction to end-of-life. Measuring the emissions outside of a product owner’s control is challenging, and practitioners rely on emission factors (
-
2025Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query. Typical training data consists of triplets containing a reference image, a textual description of desired modifications, and the target image, which are expensive and time-consuming to acquire. The scarcity of CIR datasets has led to zero-shot approaches utilizing synthetic triplets or leveraging vision-language
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all