Carlos Huertas, manager of machine learning on the Buyer Risk Prevention Team, is seen sitting at a table wearing sunglasses and a leather jacket
Carlos Huertas, manager of machine learning on the Buyer Risk Prevention Team, is a “discussion grandmaster” on Kaggle, where his avatar includes his signature sunglasses.

Scarce computing resources transformed Carlos Huertas into an optimization master

At Amazon, he develops machine learning models to help keeping Amazon stores safe and trustworthy for customers and selling partners.

Watching Iron Man as a college student in his hometown of Tijuana, Mexico, Carlos Huertas was struck by one character in particular: J.A.R.V.I.S., the butler-like artificial assistant embedded in Tony Stark’s armor.

Even though it was only a movie, Huertas knew it foreshadowed real-life potential.

“I was fascinated by that level of technology,” he says.

At the time, he was pursuing a bachelor’s degree in computer engineering at the Universidad Autónoma de Baja California. Inspired by J.A.R.V.I.S.’s impressive communication skills, Huertas decided to pursue a master’s in natural language processing (NLP) at the same university.

That early shift to artificial intelligence ultimately brought him to Amazon, where he is a manager of machine learning on the Buyer Risk Prevention Team in Seattle, which is responsible for protecting customers from fraud and abuse.

Doing more with less

The master’s program was challenging, as NLP requires a lot of hardware horsepower that wasn’t available to Huertas at the time.

Back then, you needed huge machines ... We were a very humble facility and had regular consumer computers, so it was hard for me to try to match what people were doing with more resources.
Carlos Huertas

“Back then, you needed huge machines to achieve interesting things, which I didn’t have,” he says. “We were a very humble facility and had regular consumer computers, so it was hard for me to try to match what people were doing with more resources.”

The limited computing resources forced him to think outside of the box and develop creative solutions to do more with less. The challenge energized him, and for his PhD, he turned to the field of machine learning optimization, specifically feature selection for high-dimensional spaces.

That area of machine learning involves designing algorithms that help a machine to focus solely on features that are relevant to a specific task. One example where feature selection may be used is the “cat vs dog” image classification task, a classic machine learning project for beginners that involves classifying photos as containing either a dog or a cat.

Those animals have numerous features, such as color, height, weight, tail, nose shape, and eye color. Humans use their knowledge of the world to understand what helps differentiate them. For example, size might be important as most dogs tend to be bigger, but tail might not be very useful, since both animals have it.

“How do we make sure a machine learns this on its own? Feature selection is the process to help the computer understand that some of the characteristics are more important than others, so it can focus on what matters most and achieve similar or even better level of performance without so much computing power,” Huertas says.

Solving customer problems with machine learning

Huertas routinely applies feature selection in his work at Amazon.

The Buyer Risk Prevention team, Huertas explains, is responsible for keeping Amazon stores safe and trustworthy for customers and selling partners.

“In the spirit of one of our main leadership principles, Customer Obsession, we are constantly innovating and never stop trying to get the best possible experience for all our customers,” he notes. “To this end, we identify pain points and tackle them with technology.”

In order to get it right for customers, in 2019 Amazon created a team to focus on mitigating issues customers might face when reaching out for support with their accounts; that’s the team Huertas currently leads. The team develops machine learning solutions that assist customers in resolving issues with their accounts.

“The algorithm will try to review the case on its own using artificial intelligence and determine the right action for the customer,” he says. “With this, we can provide much faster support.”

As Amazon grows, so too do the amount of data and the complexity of the systems. In that context, it is important to understand which features are relevant to determine whether an issue is legitimate or not.

“This is a perfect match for feature selection, where we ask: ‘Can we be smarter and have a selection of what we should focus on so that our models perform the best without scalability issues?’” he says.

Huertas’ team focuses on providing faster and more accurate responses to customers’ concerns about their account status.

Now, customers who may have encountered issues can reclaim access without having to navigate a complex process. Huertas thinks of his own parents, who are Amazon customers but may have a hard time using third-party systems, such as email, to communicate with Amazon.

Huertas says his background as an assistant professor at Universidad Autónoma de Baja California, where he taught object-oriented programming and web development, helped shape him into a team player and a leader.

“In academia, we have this common phrase that the student doesn't fail, it is the professor who fails,” Huertas says. “When I was a professor, I felt this need to push my students forward. And that's something that I still carry with me on my team. I feel a lot of satisfaction seeing my team members develop.”

Discussion grandmaster on Kaggle

Back when Huertas was a PhD student, he joined Kaggle, an online data science and machine learning community. His goal: use the platform to test some of his PhD ideas and see how they fared against real-life problems. Because of his frequent interactions on the platform, where he still serves as a mentor to many of his peers, he holds the title of “discussion grandmaster” and was once one of the five most active users in the forum — among almost 5 million users.

Carlos Huertas (NxGTR) | Kaggle Grandmaster Interview | Kaggle Days

“The community has always been very friendly, and newcomers ask a lot of questions on how to get started,” he says.

At Kaggle, companies promote competitions to solve real-life machine-learning problems.

“It's especially useful when you're a student, because in academia you won't have access to the type of problems that Amazon might have. Getting exposure to those problems without the need to have a job there really helps you to develop your skills,” Huertas says.

In one of those competitions, when Huertas was still a PhD student, he ended up in the top 9 contestants among thousands of scientists around the world. He was competing with a laptop that, he recalls, “could barely run more than a browser.” The experience taught him a lot about how constraints can be empowering.

“It forced me to develop my own packages. And in the process, I learned how things work behind the scenes,” he says. When people have a lot of computing power, he notes, they might forget about the importance of optimization and rely on a lot of pre-built packages that might operate like a black-box.

“When you don't understand what is the magic happening behind the scenes, it is very hard to progress beyond that,” he says.

His prominence on Kaggle drew interest from ZestFinance, a Los Angeles-based company that offers underwriting analysis for lenders. After a stint building machine learning models for them, he joined Instacart where he helped launch the company’s first customer retention platform by building machine learning models to analyze which customers were more prone to abandon the platform.

Shortly after that Amazon recruiters reached out and he accepted a position on the Buyer Risk Prevention team.

“I like that Amazon puts a huge emphasis on matching your skills with the role,” Huerta says. “While other companies might have generic roles, like data scientist, Amazon has very specialized roles, such as applied scientist, research scientist, data engineer, machine learning engineer. That ensures that you're going to focus exactly on what you like.”

Amazon is looking for data scientists, economists, research scientists, and other positions to help advance the state of the art in customer-obsessed science.

The advice he provides younger scientists is to always practice what you learn in academia in a real-life setting. He compares it with a sport: You can read several books about soccer, but if you’ve never kicked a ball, it will be very tough to play it.

“It is very important that you materialize that theory into practice,” he says. “If you are still doing your PhD, there are platforms like Kaggle that will provide you with data so that you can practice your skills. By the time you complete your studies, you will have two or three years of technical experience in the field, working with real problems. That will take you very far.”

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques