senior applied science manager Ali Dashti stands outside with a cityscape in the background
Amazon's Internet Famous page is the brainchild of senior applied science manager Ali Dashti's Discovery Tech team. His team uses machine learning to help Amazon Store customers find new products.

How Ali Dashti helps advance the science behind marketing collections

The senior applied science manager envisions machine learning as the path to a better experience for Amazon customers.

Social media can have a big influence on the popularity of certain items. Take, for example, the LEGO Flower Bouquet Building Kit featured on the show Abbott Elementary or the "miracle cleaning paste" seen in millions of online videos. Both have picked up buzz from viral clips and sharing.

On Amazon's Internet Famous page, you can find these and many other products people are talking about — without all the video clips and scrolling. The collection is the brainchild of Ali Dashti's Discovery Tech team, which helps connect shoppers at the Amazon Store with the new and exciting products.

Dashti leads a team at Amazon that collaborates with scientists across multiple organizations to steer the research behind behind building Amazon Store collections, driving recommendations, and improving personalization for customers. He joined Amazon in 2019 after several years in academia — a transition that has been marked by pleasant surprises.

"When I joined Amazon, I was thinking of myself as a small cog in this big machine, but that's not really the case," Dashti says. "You can really have an impact here, in the sense that you can drive business decisions and customer satisfaction."

Exploring new ways to shop on Amazon

Unsurprisingly, many people interact with the Amazon Store through search. You arrive with an idea of what you are looking for, type in your query, and browse the results. While effective, this is just one way to shop. Dashti's team is looking at other ways customers might discover their next favorite thing in the Amazon store.

"Is it possible to digest this list of hundreds of millions of products into smaller collections — thousands of products in tens of categories — that are connected on a narrative, such as specific events like Mother’s Day or back to school?” he elaborates. “Then we want to personalize them for our customers to discover based on their taste and shopping intent."

Related content
The story of a decade-plus long journey toward a unified forecasting model.

He breaks this challenge down into two aspects. One is collections built around events and seasonality. The Discovery Tech science team trained a machine learning model that uses seasonality forecasts, recurring marketing input, and collective customers’ past behavior to create collections such as fall or spring favorites and back to school. Another example is evergreen collections such as Internet Famous, which detects cool and viral products featured by influencers year-round. The model uses those signals to automatically create landing pages which feature those products and are discoverable by customers.

The idea for the Internet Famous feature came from a question that came up on the team: Could an algorithm identify whether an image is “cool,” based on buzz from social media influencers? The resulting feature links Amazon’s inventory with conversations on social media platforms.

Our work is more about how we can really understand what people want based on what we know about their short-term and long-term preferences and give our customers the serendipitous sense of discovery in their shopping journey.
Ali Dashti

“We trained a deep learning model on data from influencers to be a 'cool detector' for the Amazon catalog,” he says.

The second part of the personalization problem, Dashti says, is what the team calls automated merchandising: connecting the right products to individual customers.

“Now that we have these collections, how do we drive traffic to them? If a customer is looking at a product, maybe we can recommend some other products that are internet famous or spring favorites, based on what that customer is viewing,” he explains.

He added that the team is thinking about how to drive discovery for these collections in places where there is no specific intent by customers. For example, the Amazon homepage or an email might offer a “discover customers’ most-loved for you” grouping.

Automated merchandising involves the scientific challenge of making an AI-based personal product recommender of sorts for Amazon customers, answering the question of what content, where in the customer journey, and at what time. It goes beyond creating a set of rules where you might, say, display more shoes if someone has searched for shoes.

Related content
Ren Zhang and her team tackle the interesting science challenges behind surfacing the most relevant offerings.

“Our work is more about how we can really understand what people want based on what we know about their short-term and long-term preferences and give our customers the serendipitous sense of discovery in their shopping journey, even if they are not looking for a specific category of products,” he says. “Another tenet of our personalization charter is how can we make our recommendations explainable.”

Dashti refers to an explosion of innovation in AI over the past few years based on large language models that can generate text much as a human would.

“This is what we can leverage to improve how our customers experience events such as Father’s Day and back to school — understanding customer journeys as a sequence of preferences and behaviors such as shopping intents, page visits, et cetera, to leverage existing transformer-based language models that help customers sort through the huge catalog of products we have at Amazon and ensure they have a bar-raising experience,” he says.

A pivot from university to tech

Dashti’s academic focus at the University of Wisconsin Milwaukee, cryo-electron microscopy, was seemingly a far cry from what he is doing now. But there is a common thread: He was writing algorithms designed to uncover insights buried in data. When Dashti was an undergraduate at Sharif University of Technology in Iran, a professor and mentor introduced him to the research area of brain-computer interfaces.

During his fourth year, he wrote an algorithm that could identify tasks like thinking about writing a poem or rotating an object based on electroencephalogram signals. From that project, he says, “I got hooked.” He knew he wanted to pursue some form of machine learning.

Related content
How her background helps her manage a team charged with assisting internal partners to answer questions about the economic impacts of their decisions.

At the University of Wisconsin, where he earned a master’s in electrical and electronics engineering and a doctorate in biomedical and healthcare informatics, he became interested in cryo-electron microscopy, which can produce atomic-level images of frozen biological samples. He built an algorithm that could help identify conformational changes of molecular machines during their work cycle based on geometric data. His work was cited in the scientific significance section of the 2017 Nobel Prize in chemistry, which cited the development of the imaging technique and its ability to generate 3D images of biomolecules.

After several years, he had built a prestigious academic career and was living comfortably in Milwaukee with his wife and two children. But he had thoughts of moving to industry, where his work would have more tangible impacts. When a recruiter from Amazon reached out, he responded, and before long he was moving to Seattle to join the Fashion Marketing team as an applied scientist.

Soon after he joined Amazon, Carmen Nestares, who was then the group’s chief marketing officer, invited Dashti to get coffee and talked to him about the company’s Day One culture, encouraging him to make his mark.

“This was my boss’s boss’s boss. It was completely out of the blue,” he says. “She really gave me this confidence and ownership that I needed at the time.”

In his first year at the company, Dashti wrote a brief about attribution, the process of determining how different marketing campaigns link to a given purchase. He thought maybe a couple of people would read it.

To his surprise, the brief sparked change. “It went into the roadmap for the next year. A year after that, the team had incorporated my findings into how they thought about attribution. That was amazing,” he said.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

Dashti later joined Nestares in building Discovery Tech, where he now manages a team of scientists. He describes Amazon as being like a group of 10,000 startups. “You can have all the freedom of a startup, all that learning experience of putting on multiple hats,” he says. “But you have all the wealth of knowledge in the whole field at your disposal.”

The culture lends itself to a balance between immediate projects and what he has called long-term science discovery moonshots. Among other projects, the team is collaborating with Amazon Scholars Yury Polyanskiy and Sasha Rakhlin, professors of computer science at MIT, in a moonshot-level effort to map customer interactions with products onto complex graph networks to enhance personalization. Another moonshot would be to turn advances in text-to-image generation and computer vision toward searching Amazon’s catalog in new ways — by generating an image based on your own words and surfacing matching products, for example.

In addition to the collaborative nature of his work with the Discovery Tech team, Dashti has appreciated the chance to work with a diverse team and to grow in ways that go beyond technical experience. Parity for women is particularly important to him, given the recent protests in Iran, and he appreciates having mostly women leaders on his current team at Amazon.

“I have always been surrounded by powerful women,” he says, mentioning his mother and his wife, who also grew up in Iran. “Having more women in higher management in tech is a must. It brings balance, pragmatism, empathy — qualities that are really driving this organization.”

As a manager, Dashti supports scientists on his team, about a third of which are women, in pursuing their big ideas. He remembers times in his career before Amazon, he says, when he didn’t really like what he was doing, and it was just a job. He strives to make sure no one on his team reaches that point.

“It starts with ownership,” he says. “I give team members the power to choose what they want, but also the responsibility of seeing the impact of what they do. It’s a management style that requires a lot of trust.”

Related content

US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, NY, New York
The Amazon SCOT Forecasting team seeks a Senior Applied Scientist to join our team. Our research team conducts research into the theory and application of reinforcement learning. This research is shared in top journals and conferences and has a significant impact on the field. Through our launch of several Deep RL models into production, our work also affects decision making in the real world. Members of our group have varied interests—from the mathematical foundations of reinforcement learning, to language modeling, to maintaining the performance of generative models in the face of copyrights, and more. Recent work has focused on sample efficiency of RL algorithms, treatment effect estimation, and RL agents integrating real-world constraints, as applied in supply chains. Previous publications include: - Linear Reinforcement Learning with Ball Structure Action Space - Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation - Deep Inventory Management - What are the Statistical Limits of Offline RL with Linear Function Approximation? Working collaboratively with a group of fellow scientists and engineers, you will identify complex problems and develop solutions in the RL space. We encourage collaboration across teammates and their areas of specialty, leading to creative and ambitious projects with the goal of publication and production. Key job responsibilities - Drive collaborative research and creative problem solving - Constructively critique peer research; mentor junior scientists - Create experiments and prototype implementations of new algorithms and techniques - Collaborate with engineering teams to design and implement software built on these new algorithms - Contribute to progress of the Amazon and broader research communities by producing publications We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Virtual Location - California
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Role: As a Data Scientist, Analytics member of the Data Platform - Insights team, you'll provide data analysis and support for platform, service, and operational engineering teams at Twitch, shaping the way success is measured. Defining what questions should be asked and scaling analytics methods and tools to support our growing business. Additionally, you will help support the vision for business analytics, solutions architecture for data related business constructs, as well as tactical execution such as experiment analysis and campaign performance reporting. You are paving the way for high-quality, high-velocity decisions and will report to the Manager, Data Science. For this role, we're looking for an experienced data staff who will oversee data instrumentation, dashboard/report building, metrics reviews, inform team investments, guidance on success/failure metrics and ad-hoc analysis. You will also work with technical and non-technical staff members throughout the company, and your effort will have an impact on hundreds of partners at Twitch You Will: - Work with members of Platforms & Services to guide them towards better decision making from the available data. - Promote data knowledge and insights through managing communications with partners and other teams, collaborate with colleagues to complete data projects and ensure all parties can use the insights to further improve. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers, and ensure that the teams and programs have access to data to make decisions - Manage ambiguous problems and adapt tools to answer complicated questions. - Identify the trade-offs between speed and quality of different approaches. - Create analytical frameworks to measure team success by partnering with teams to establish success metrics, create approaches to track the data and troubleshoot errors, measure and evaluate the data to develop a common language for all colleagues to understand these metrics. - Operationalize data processes to provide partners with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks: - Medical, Dental, Vision & Disability Insurance - 401(k), Maternity & Parental Leave - Flexible PTO - Commuter Benefits - Amazon Employee Discount - Monthly Contribution & Discounts for Wellness Related Activities & Programs (e.g., gym memberships, off-site massages), -Breakfast, Lunch & Dinner Served Daily - Free Snacks & Beverages We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | Seattle, WA, USA | Virtual Location - CA
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? Have you also wondered what are different ways that the transportation assets can be used to delight the customer even more. If so, the Amazon transportation Services, Product and Science is for you . We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed Applied Scientist with strong scientific thinking, good software and statistics experience, skills to help manage projects and operations, improve metrics, and develop scalable processes and tools. The primary role of an Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how we operate the middle mile network. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, machine learning , and the ability to use data and research to make changes. This role requires robust skills in research and implementation of scalable products and models . This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Los Angeles
The Alexa team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology. Key job responsibilities As an Applied Scientist with the Alexa team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The Alexa team has a mission to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Los Angeles, CA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA