Pai-Ling Yin, senior manager of research science, is seen speaking to a classroom, there is a chalkboard behind her and she is gesturing with her hands.
Pai-Ling Yin, senior manager of research science, says the highlight of her job is organizing teams of experts across operations, engineering, economics, and data science to answer research questions.
Courtesy of Pai-Ling Yin

Pai-Ling Yin brings an academic’s lens to the study of buying and selling at Amazon

How her background helps her manage a team charged with assisting internal partners to answer questions about the economic impacts of their decisions.

Online bidding services were disrupting the auction industry when Pai-Ling Yin started pursuing her PhD in economics in 1997 at Stanford University. She seized on the data that these services generate to study and understand the new economy emerging from this industry in transition.

“The internet accelerates and scales up transactions,” said Yin. “All these auctions were happening online. I could watch what was happening. ‘Who is going to succeed? Who is going to fail? How is it going to shape the future?’”

These questions led Yin to a PhD thesis on the economics of online auctions for personal computers. They also framed her two decades in academia, where she researched and taught technology strategy, innovation, and entrepreneurship at Harvard Business School, the Massachusetts Institute of Technology (MIT) Sloan School of Management, Stanford’s Department of Economics, and the University of Southern California’s Marshall School of Business.

We are trying to think about, ‘What is the long-term value of any action we take? How do we make sure that we’re giving our customers the best experience?'
Pai-Ling Yin

In 2021, her former advisor at Stanford, Pat Bajari, who is now chief economist and vice president of the Core AI team at Amazon, recruited her to join his team as a senior manager of research science. Core AI uses economics, statistics, and machine learning to understand and design the complex economy of Amazon buyers and sellers.

Today Yin manages a team of economists, program managers, and engineers tasked with helping internal partners across Amazon research questions about the economic impacts of their decisions.

“We are trying to think about, ‘What is the long-term value of any action we take? How do we make sure that we’re giving our customers the best experience? Of the many options we have to interact with customers, which seem to delight them the most?’” Yin explained.

Economics at Amazon
Tatevik Sekhposyan, Amazon Scholar and Texas A&M University professor, enjoys the flexibility of economics and how embracing uncertainty can enhance prediction.

For example, the team works with Amazon’s concessions department to model the best way to respond when a customer returns a product. There are a number of options; each has costs and benefits. Which one best assists customers shopping in the Amazon Store?

The highlight of the job, Yin said, is organizing teams of experts across disciplines such as operations, engineering, economics, and data science to answer these types of questions.

“We’re bringing the best of the best in all these different fields. Many are not my area of expertise. I’m learning every day and engaged in interesting discussions,” she said.

A lifelong learner

Yin, whose parents immigrated to the US from China via Taiwan, is the first US-born member of her immediate family. She completed undergraduate studies at Indiana University in Bloomington on a scholarship from the Wells Scholars Program and earned simultaneous degrees in economics, French, and mathematics, graduating summa cum laude in each.

During her junior year, she was selected as a Truman Scholar, which allowed her to pursue a master’s degree in regulation at the London School of Economics and Political Science. After her time in London, she went to Stanford and met Bajari.

“At the time, the internet was fairly new,” Yin said. “Online businesses had just started, and I was interested in all these new industries.”

Yin was at the forefront of a trend where trained economists end up teaching at business schools.

Her academic research and teaching career focused on the type of industrial organization (i.e., the structure of players in an industry) that emerges from innovation in technology, which can change the structure by changing the cost of entry and transactions in that industry.

Academics at Amazon
The Johns Hopkins business school professor and Amazon Scholar focuses on enhancing customer experiences.

“Any new innovation is going to create this new way of economic actors interacting,” Yin said of the industrial organization concept. “What players emerge? What new technologies are spawned from the original technology? How do industries now interact? How do buyers and sellers interact?"

While teaching technology strategy at MIT, Yin noticed an industrial organization emerging around mobile phones and apps following the introduction of the smartphone in 2007. The moment had echoes of the early days of online auctions. She was intrigued and began to study the mobile app economy from her office in Cambridge.

“The beginning of that whole industry was literally in South San Francisco, not even in the Bay Area,” she said. “All these little startups were finding these little, little offices and doing their things. And I really wanted to be out closer to the action.”

That desire to be at the center of the emerging mobile-computing industry led her back to Stanford, where she co-founded the Mobile Innovation Group with another of her former advisors, economist Tim Bresnahan. Yin’s research focused on entrepreneurship in the mobile-app industry as it emerged and evolved with competing mobile services.

This line of research led to a greater focus on entrepreneurship, which she taught at USC from 2016 until she started at Amazon.

Academics at Amazon
Co-mingling industry experience and academic teaching.

While at USC, Yin co-created a required course for the MBA program on critical thinking. The curriculum is centered on helping students deal with ambiguity — how to make progress in the face of uncertainty. Her former students who are now at Amazon tell her that they regularly apply lessons learned from the course, such as taking a few minutes to ask one more question about a problem to advance their thinking.

“That was the spirit of the class,” she said. “What are these little tools that you might think of as small interventions, which are not going to get to optimum thinking but are going to get to better thinking? Then, as you practice those skills, you’ll get faster and better and, over time, develop that muscle.”

“As a teacher, Pai-Ling empowered her students to think outside the box — each answer begets a new question, and great solutions often come by probing wider and deeper,” said Darren Setiawan, a senior product manager at Amazon who was Yin’s student, teaching assistant, and research assistant at USC. “I was especially fond of her courses and often refer back to her frameworks when dealing with complex work — and life — decisions.”

Practice what you teach

When COVID-19 hit, Yin had been in academia for nearly two decades and was ready for a change. The opportunity to join Amazon brought with it a chance to put into practice her years of training as an economist and research scientist. For example, she brings short- and long-term thinking to the problems her team is asked to solve.

“In the short run, the problem is, what’s the cost-benefit analysis of the issue we’re facing now? But the world is dynamic and changing. You know that analysis has to be redone in a few years. How do we think about anticipating flexibility in the models that we’re creating?” she explained.

Economists at Amazon
How the Amazon Supply Chain Optimization Technologies principal economist uses his expertise in time series econometrics to forecast aggregate demand.

The teacher in her also embraces ambiguity and looks forward to the next big problem that her team gets to solve, whatever it is.

“That’s the exciting part,” she said.

Solving that problem, she noted, will require collaboration among people with a diverse set of expertise — economists, data scientists, psychologists, engineers, and program managers. That’s why she recommends that young scientists learn to appreciate the world through multiple lenses: the lenses of their specific areas of expertise as well as the lenses of their coworkers and colleagues.

“You have expertise, and that is wonderful,” she said, as if speaking to a group of newly minted PhDs. “But it is now your job to figure out where you can contribute and where you are going to learn from others. That approach will contribute to a richer life in both social and problem-solving ways.”

Research areas

Related content

US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.