Pai-Ling Yin, senior manager of research science, is seen speaking to a classroom, there is a chalkboard behind her and she is gesturing with her hands.
Pai-Ling Yin, senior manager of research science, says the highlight of her job is organizing teams of experts across operations, engineering, economics, and data science to answer research questions.
Courtesy of Pai-Ling Yin

Pai-Ling Yin brings an academic’s lens to the study of buying and selling at Amazon

How her background helps her manage a team charged with assisting internal partners to answer questions about the economic impacts of their decisions.

Online bidding services were disrupting the auction industry when Pai-Ling Yin started pursuing her PhD in economics in 1997 at Stanford University. She seized on the data that these services generate to study and understand the new economy emerging from this industry in transition.

“The internet accelerates and scales up transactions,” said Yin. “All these auctions were happening online. I could watch what was happening. ‘Who is going to succeed? Who is going to fail? How is it going to shape the future?’”

These questions led Yin to a PhD thesis on the economics of online auctions for personal computers. They also framed her two decades in academia, where she researched and taught technology strategy, innovation, and entrepreneurship at Harvard Business School, the Massachusetts Institute of Technology (MIT) Sloan School of Management, Stanford’s Department of Economics, and the University of Southern California’s Marshall School of Business.

We are trying to think about, ‘What is the long-term value of any action we take? How do we make sure that we’re giving our customers the best experience?'
Pai-Ling Yin

In 2021, her former advisor at Stanford, Pat Bajari, who is now chief economist and vice president of the Core AI team at Amazon, recruited her to join his team as a senior manager of research science. Core AI uses economics, statistics, and machine learning to understand and design the complex economy of Amazon buyers and sellers.

Today Yin manages a team of economists, program managers, and engineers tasked with helping internal partners across Amazon research questions about the economic impacts of their decisions.

“We are trying to think about, ‘What is the long-term value of any action we take? How do we make sure that we’re giving our customers the best experience? Of the many options we have to interact with customers, which seem to delight them the most?’” Yin explained.

Economics at Amazon
Tatevik Sekhposyan, Amazon Scholar and Texas A&M University professor, enjoys the flexibility of economics and how embracing uncertainty can enhance prediction.

For example, the team works with Amazon’s concessions department to model the best way to respond when a customer returns a product. There are a number of options; each has costs and benefits. Which one best assists customers shopping in the Amazon Store?

The highlight of the job, Yin said, is organizing teams of experts across disciplines such as operations, engineering, economics, and data science to answer these types of questions.

“We’re bringing the best of the best in all these different fields. Many are not my area of expertise. I’m learning every day and engaged in interesting discussions,” she said.

A lifelong learner

Yin, whose parents immigrated to the US from China via Taiwan, is the first US-born member of her immediate family. She completed undergraduate studies at Indiana University in Bloomington on a scholarship from the Wells Scholars Program and earned simultaneous degrees in economics, French, and mathematics, graduating summa cum laude in each.

During her junior year, she was selected as a Truman Scholar, which allowed her to pursue a master’s degree in regulation at the London School of Economics and Political Science. After her time in London, she went to Stanford and met Bajari.

“At the time, the internet was fairly new,” Yin said. “Online businesses had just started, and I was interested in all these new industries.”

Yin was at the forefront of a trend where trained economists end up teaching at business schools.

Her academic research and teaching career focused on the type of industrial organization (i.e., the structure of players in an industry) that emerges from innovation in technology, which can change the structure by changing the cost of entry and transactions in that industry.

Academics at Amazon
The Johns Hopkins business school professor and Amazon Scholar focuses on enhancing customer experiences.

“Any new innovation is going to create this new way of economic actors interacting,” Yin said of the industrial organization concept. “What players emerge? What new technologies are spawned from the original technology? How do industries now interact? How do buyers and sellers interact?"

While teaching technology strategy at MIT, Yin noticed an industrial organization emerging around mobile phones and apps following the introduction of the smartphone in 2007. The moment had echoes of the early days of online auctions. She was intrigued and began to study the mobile app economy from her office in Cambridge.

“The beginning of that whole industry was literally in South San Francisco, not even in the Bay Area,” she said. “All these little startups were finding these little, little offices and doing their things. And I really wanted to be out closer to the action.”

That desire to be at the center of the emerging mobile-computing industry led her back to Stanford, where she co-founded the Mobile Innovation Group with another of her former advisors, economist Tim Bresnahan. Yin’s research focused on entrepreneurship in the mobile-app industry as it emerged and evolved with competing mobile services.

This line of research led to a greater focus on entrepreneurship, which she taught at USC from 2016 until she started at Amazon.

Academics at Amazon
Co-mingling industry experience and academic teaching.

While at USC, Yin co-created a required course for the MBA program on critical thinking. The curriculum is centered on helping students deal with ambiguity — how to make progress in the face of uncertainty. Her former students who are now at Amazon tell her that they regularly apply lessons learned from the course, such as taking a few minutes to ask one more question about a problem to advance their thinking.

“That was the spirit of the class,” she said. “What are these little tools that you might think of as small interventions, which are not going to get to optimum thinking but are going to get to better thinking? Then, as you practice those skills, you’ll get faster and better and, over time, develop that muscle.”

“As a teacher, Pai-Ling empowered her students to think outside the box — each answer begets a new question, and great solutions often come by probing wider and deeper,” said Darren Setiawan, a senior product manager at Amazon who was Yin’s student, teaching assistant, and research assistant at USC. “I was especially fond of her courses and often refer back to her frameworks when dealing with complex work — and life — decisions.”

Practice what you teach

When COVID-19 hit, Yin had been in academia for nearly two decades and was ready for a change. The opportunity to join Amazon brought with it a chance to put into practice her years of training as an economist and research scientist. For example, she brings short- and long-term thinking to the problems her team is asked to solve.

“In the short run, the problem is, what’s the cost-benefit analysis of the issue we’re facing now? But the world is dynamic and changing. You know that analysis has to be redone in a few years. How do we think about anticipating flexibility in the models that we’re creating?” she explained.

Economists at Amazon
How the Amazon Supply Chain Optimization Technologies principal economist uses his expertise in time series econometrics to forecast aggregate demand.

The teacher in her also embraces ambiguity and looks forward to the next big problem that her team gets to solve, whatever it is.

“That’s the exciting part,” she said.

Solving that problem, she noted, will require collaboration among people with a diverse set of expertise — economists, data scientists, psychologists, engineers, and program managers. That’s why she recommends that young scientists learn to appreciate the world through multiple lenses: the lenses of their specific areas of expertise as well as the lenses of their coworkers and colleagues.

“You have expertise, and that is wonderful,” she said, as if speaking to a group of newly minted PhDs. “But it is now your job to figure out where you can contribute and where you are going to learn from others. That approach will contribute to a richer life in both social and problem-solving ways.”

Research areas

Related content

US, WA, Seattle
The Artificial General Intelligent team (AGI) seeks a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP) and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. The ideal candidate possesses a solid understanding of machine learning fundamentals and a passion for pushing boundaries in the field. They thrive in fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities . You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. . You will work on core LLM technologies, including developing best-in-class modeling, prompt optimization algorithms to enable Conversation AI use cases · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA
US, WA, Redmond
Project Kuiper is an initiative to increase global broadband access through a constellation of 3,236 satellites in low Earth orbit (LEO). Its mission is to bring fast, affordable broadband to unserved and underserved communities around the world. Project Kuiper will help close the digital divide by delivering fast, affordable broadband to a wide range of customers, including consumers, businesses, government agencies, and other organizations operating in places without reliable connectivity. As an Applied Scientist on the team you will responsible for building out and maintaining the algorithms and software services behind one of the world’s largest satellite constellations. You will be responsible for developing algorithms and applications that provide mission critical information derived from past and predicted satellite orbits to other systems and organizations rapidly, reliably, and at scale. You will be focused on contributing to the design and analysis of software systems responsible across a broad range of areas required for automated management of the Kuiper constellation. You will apply knowledge of mathematical modeling, optimization algorithms, astrodynamics, state estimation, space systems, and software engineering across a wide variety of problems to enable space operations at an unprecedented scale. You will develop features for systems to interface with internal and external teams, predict and plan communication opportunities, manage satellite orbits determination and prediction systems, develop analysis and infrastructure to monitor and support systems performance. Your work will interface with various subsystems within Project Kuiper and Amazon, as well as with external organizations, to enable engineers to safely and efficiently manage the satellite constellation. The ideal candidate will be detail oriented, strong organizational skills, able to work independently, juggle multiple tasks at once, and maintain professionalism under pressure. You should have proven knowledge of mathematical modeling and optimization along with strong software engineering skills. You should be able to independently understand customer requirements, and use data-driven approaches to identify possible solutions, select the best approach, and deliver high-quality applications. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. About the team The Constellation Management & Space Safety team maintains and builds the software services responsible for maintaining situational awareness of Kuiper satellites through their entire lifecycle in space. We coordinate with internal and external organizations to maintain the nominal operational state of the constellation. We build automated systems that use satellite telemetry and other relevant data to predict future orbits, plan maneuvers to avoid high risk close approaches with other objects in space, keep satellites in the desired locations, and exchange data with external organizations. We provide visibility information that is used to predict and establish communication channels for Kuiper satellites. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Recruitment and Success organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential by using our scaled, automated, and self-service tools. We aim to accelerate the growth of Sellers by providing tools and insights that enable them to make better and faster decisions at each step of selection management. To accomplish this, we offer intelligent insights that are both detailed and actionable, allowing Sellers to introduce new products and engage with customers effectively. We leverage extensive structured and unstructured data to generate science-based insights about their business. Furthermore, we provide personalized recommendations tailored to individual Sellers' business objectives in a user-friendly format. These insights and recommendations are integrated into our products, including Amazon Brand Analytics (ABA), Product Opportunity Explorer (OX), and Manage Your Growth (MYG). We are looking for a talented and passionate Sr. Research Scientist to lead our research endeavors and develop world-class statistical and machine learning models. The successful candidate will work closely with Product Managers (PM), User Experience (UX) designers, engineering teams, and Seller Growth Consulting teams to provide actionable insights that drive improvements in Seller businesses. Key job responsibilities You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. About the team The Seller Growth science team aims to provide data and science solutions to drive Seller growth and create better Seller experiences. We structure our science domain with three key themes and two horizontal components. We discover the opportunity space by identifying opportunities with unrealized potential, then generate actionable analytics to identify high value actions (HVAs) that unlock the opportunity space, and finally, empower Sellers with personalized Growth Plans and differentiated treatment that help them realize their potential. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, London
Amazon Advertising is looking for a Senior Applied Scientist to join its brand new initiative that powers Amazon’s contextual advertising product. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. We are looking for a dynamic, innovative and accomplished Senior Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML and Artificial General Intelligence based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. About the team The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
At Amazon, we are committed to being the Earth’s most customer-centric company. The International Technology group (InTech) owns the enhancement and delivery of Amazon’s cutting-edge engineering to all the varied customers and cultures of the world. We do this through a combination of partnerships with other Amazon technical teams and our own innovative new projects. You will be joining the Tools and Machine learning (Tamale) team. As part of InTech, Tamale strives to solve complex catalog quality problems using challenging machine learning and data analysis solutions. You will be exposed to cutting edge big data and machine learning technologies, along to all Amazon catalog technology stack, and you'll be part of a key effort to improve our customers experience by tackling and preventing defects in items in Amazon's catalog. We are looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading machine learning solutions. We strongly value your hard work and obsession to solve complex problems on behalf of Amazon customers. Key job responsibilities We look for applied scientists who possess a wide variety of skills. As the successful applicant for this role, you will with work closely with your business partners to identify opportunities for innovation. You will apply machine learning solutions to automate manual processes, to scale existing systems and to improve catalog data quality, to name just a few. You will work with business leaders, scientists, and product managers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will be part of team of 5 scientists and 13 engineers working on solving data quality issues at scale. You will be able to influence the scientific roadmap of the team, setting the standards for scientific excellence. You will be working with state-of-the-art models, including image to text, LLMs and GenAI. Your work will improve the experience of millions of daily customers using Amazon in Europe and in other regions. You will have the chance to have great customer impact and continue growing in one of the most innovative companies in the world. You will learn a huge amount - and have a lot of fun - in the process! This position will be based in Madrid, Spain We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
IN, KA, Bangalore
Appstore Quality tech team builds tools, using AI and engineering techniques to provide the best quality apps to Amazon Appstore users. We are a team of highly-motivated, engaged, and responsive professionals who enable the core testing and quality infrastructure of Amazon Appstore. Come join our team and be a part of history as we deliver results for our customers. Appstore Quality team's mission is to automate all types of functional, non functional, and compliance checks on apps submitted by appstore app developers to enable north star vision of publishing apps in under 5 hours. Our team uses various ML/AI/Generative AI techniques to automatically detect violations in images and text metadata submitted by developers. We are working on ambitious project AI projects such as building LLM, auto navigate a mobile app to detect inside app issues and violations. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. This role involves working closely with Sr Data Scientist, Principal engineer, and engineering team to build ML and AL based solutions in meeting our north start vision. Key job responsibilities • Implement statistical methods to solve specific business problems utilizing code (Python, Scala, etc.). • Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. • Collaborate with program management, product management, software developers, data engineering, and business leaders to provide science support, and communicate feedback; develop, test and deploy a wide range of statistical, econometric, and machine learning models. • Build customer-facing reporting tools to provide insights and metrics which track model performance and explain variance. • Communicate verbally and in writing to business customers with various levels of technical knowledge, educating them about our solutions, as well as sharing insights and recommendations. • Earn the trust of your customers by continuing to constantly obsess over their needs and helping them solve their problems by leveraging technology • Excellent prompt engineering skillset with a deep knowledge of LLMs, embeddings, transformer models. • Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team In Appstore, “We entertain, and delight, hundreds of millions of people across devices with a vast selection of relevant apps, games, and services by making it trivially easy for developers to deliver”. Appstore team enables the customer and developer flywheel on devices by enabling developers to seamlessly launch and manage their apps/ in-app content on Amazon. It helps customers discover, buy and engage with these apps on Fire TV, Fire Tablets and mobile devices. The technologies we build on vary from device software, to high scale services, to efficient tools for developers. We are open to hiring candidates to work out of one of the following locations: Bangalore, KA, IND
US, WA, Bellevue
Want to be part of the team whose mission is to expand Alexa to new countries, languages, devices and cultures? The Alexa International team makes it happen. Our customers are very diverse in where they live, the languages they speak to Alexa, the devices they use and the content that matters most. In turn, our problems are diverse and need innovative solutions. We are seeking a Senior Applied Science Manager who will play a key role in the next generation of AI powered Conversational Assistants. Key job responsibilities Lead and manage a team of applied and research scientists responsible for building multilingual experiences Collaborate with cross-functional teams to ensure that Amazon’s AI models are aligned with human preferences. Identify and prioritize research opportunities that have the potential to significantly impact our AI systems. Mentor and guide team members to achieve their career goals and objectives. Communicate research findings and progress to senior leadership and stakeholders. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: One Washington Park, Newark, NJ, 07102 Duties: Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3 / edX storage systems. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports into Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s in Statistics, Computer Science, Data Science, Machine Learning, Applied Math, Operations Research, Economics, or a related field plus two (2) years of experience as a Data Scientist, Data Engineer, or other occupation/position/job title involving research and data analysis. Experience may be gained concurrently and must include one (1) year in each of the following: - Building statistical models and machine learning models using large datasets from multiple resources - Working with Customer, Content, or Product data modeling and extraction - Using database technologies such as SQL or ETL - Applying specialized modelling software including Python, R, SAS, MATLAB, or Stata. Alternatively, will accept a Bachelor's and four (4) years of experience. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL157. We are open to hiring candidates to work out of one of the following locations: Newark, NJ, USA
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA