Domenico Giannone, a principal economist with Amazon, is shown giving a presentation
Domenico Giannone is an Amazon principal economist focusing on forecasting and understanding Amazon aggregate demand by developing dynamic machine-learning methods.

Domenico Giannone’s never-ending drive to learn more from economic data

How the Amazon Supply Chain Optimization Technologies principal economist uses his expertise in time series econometrics to forecast aggregate demand.

When Domenico Giannone decided to study statistics as an undergrad at Sapienza Università di Roma in the early 1990s, he didn’t fully understand what the discipline — the collection, analysis, interpretation, and presentation of data — entailed.

“I was window shopping around the campus and saw something about statistics. I started asking people about it and they told me it involved a lot of math and also some social studies, and I thought, ‘Well, that might work for me,’” he recalled.

Given he is one of the most cited economists of his generation in several different fields of economic study, “might” turned out to be an understatement.

My encounter with statistics probability theory and economics was a revelation. I could not stop diving deeper and deeper.
Domenico Giannone

“I liked that it could provide powerful tools to understand people’s behavior and socio-economic trends and help improve social welfare,” he said. “My encounter with statistics probability theory and economics was a revelation. I could not stop diving deeper and deeper.”

After college, Giannone worked at the Italian anti-money laundering authority and then pursued a PhD in statistics and economics at the Université Libre de Bruxelles (ULB), in Belgium. There his research focused on the econometrics of high-dimensional data.

In an era when people were just beginning to talk about big data, he decided to focus on large dynamic forecasting models. In doing so, he helped develop the theories that have been shaping his research ever since.

Turning a curse into a blessing

“In statistics, there is something called the curse of dimensionality,” Giannone explained. While more data should result in better predictions, it also means more noise, which requires more complex models to sort valuable data from the noise.

“With that complexity, it’s easier to get lost because there is too much statistical uncertainty,” he added.

The goal of his research: turn the curse of dimensionality into a blessing by removing the high variance and uncertainty while extracting the correct signals from the data.

Giannone draws a parallel between making sense of big data through models and learning how to get around in a new city with a map.

“The perfect map would be a 1:1 map, which is also completely impractical,” he noted. “In a sense, handling big data and high dimensional models is trying to understand what is the right scale of the map that allows you to get the information you need without getting lost in details. And there are statistical methods that allow us to essentially handle the trade-off between complexity and uncertainty.”

While pursuing his PhD, he took an interest in nowcasting, a term he borrowed from meteorology which refers to the prediction of the present.

"The very origin of nowcasting"

Official economic indicators like gross domestic product (GDP) are released quarterly — and often revised, meaning officials relying on them to make real-time policy decisions are utilizing incomplete data.

Giannone sought a methodology that could utilize more frequently released data — like exchange rates, stock prices, opinion surveys, and labor market indicators — to provide a more accurate and timelier picture of the economic present.

Related content
New method identifies which causal factors contribute most to observed changes in probability distributions.

“I developed a factor model to constantly digest all this massive information that is available every day to predict where we are now — a prediction of the present,” he explained.

Giannone and several collaborators started developing the nowcasting methodology as part of a project for the Board of Governors of the U.S. Federal Reserve System.

The first results were published in a 2005 working paper, “Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases”. The paper “formalizes the process of updating the nowcast and forecast on output and inflation as new releases of data become available.”

Learning about the euro area through a now-casting model

“This paper is the very origin of nowcasting,” Giannone explained. “The approach was developed from broader research in which I developed dynamic machine learning methods to distill information from big data in real time.”

This is now a thriving academic field and almost every central bank in the world has developed a nowcasting model for their economy.

Between research and practice

In 2009, after a six-year stretch where he worked as a scientific coordinator for Euro Area Business Cycle Network and an economist for the European Central Bank, his interest in formal research drew him back to academia.

As a professor at Solvay Brussels School of Economics and Management, he taught econometrics at all levels, from undergraduate to PhD.

“I get inspiration from practical problems, this is what drives my research. But I'm also very interested in pure research and treating problems with analytic rigor. So that's why I've always been in between research and practice,” he said.

While teaching, he founded Now-Casting Economics — an online service that provides a short-term forecast for the world’s largest economies in real-time. The company is still active and its main clients are hedge funds and other investment institutions. Giannone is currently a passive shareholder.

In 2014, he moved to the U.S. to work as a research economist at the Federal Reserve Bank of New York, where he founded and led a team focused on macroeconometrics and forecasting. His goal: use time series statistical methods to make predictions and interpretations of macroeconomic trends. Every week, his team would publish an updated assessment of the state of the economy based on new data that had become available, a product that was closely followed by the financial markets and the media.

Giannone notes that central bank research departments are very similar to universities in terms of the rigor expected in economic analyses. He admits, however, that he assumed the same would not hold true for a company like Amazon.

“I always thought about the corporate environment as a place in which you have to give up the rigor because you have to deliver answers fast,” he explained.

A presentation he gave at Amazon changed his mind — and his career path.

Applying his research at Amazon

In 2017, Giannone was invited to give a presentation about nowcasting by a former colleague, George Monokroussos, then an Amazon senior economist. It was there he learned about the interesting forecasting challenges that scientists were tackling at the company — and that his initial assumptions were invalid.

“I saw people working on important practical problems, but without giving up the possibility of diving deep,” he said. “I also realized that the kind of research that I was doing, the kinds of tools that I developed and like to use, had a potentially important role in Amazon. I saw a lot of opportunities.”

The kind of research that I was doing, the kinds of tools that I developed and like to use, had a potentially important role in Amazon. I saw a lot of opportunities.
Domenico Giannone

After the event, he had a conversation with an Amazon HR representative about his experience and interests, and about the general culture of the company. Those conversations eventually led to him joining Amazon as a senior principal economist in the Supply Chain Optimization Technologies (SCOT) organization in November 2019.

Today, Giannone focuses primarily on forecasting and understanding Amazon aggregate demand by developing and deploying interpretable and explainable dynamic machine-learning methods. These forecasts don’t focus on specific product sales, but instead on the total company sales over time.

“This is very similar to my expertise because, as a macroeconomist, I don't predict detailed sectors or specific products but the overall behavior.”

The forecasts Giannone and his colleagues produce are used to make planning decisions at all levels.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“Forecasting is very important to make sure that our customers get what they want in the fastest possible way,” he explained.

These models look at past trends to predict future demand and also use macroeconomic information that examines the state of economy to understand cyclical and secular changes in consumer behavior.

“When COVID arrived, it became clear that understanding macroeconomic trends was more important than ever,” Giannone said.

He says the primary difference between doing research within industry and his previous work environments is that he gets to work with people from diverse backgrounds, including engineers, computer scientists, applied mathematicians, and microeconomists.

“This is something that I always loved because I get inspired by other fields. I had that experience in academia but on limited occasions. Here at Amazon, I experience it every day.”

Related content

US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. The Research Science team at Amazon Robotics is seeking interns with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, planning/scheduling, and reinforcement learning. As an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000