Ozge Sahin on the art and science of studying consumer behavior

The Johns Hopkins business school professor and Amazon Scholar focuses on enhancing customer experiences.

Buy one, get one free: It's a time-honored shopping offer that's often a no-brainer for customers. In the operational research world, BOGO is an example of nonlinear pricing. If done right, such pricing can be a win for both consumers and retailers.

Ozge Sahin
Amazon Scholar Ozge Sahin is a professor of operations management and business analytics at Johns Hopkins and an expert in understanding how pricing affects customer decisions.

Amazon Scholar Ozge Sahin explores nonlinear pricing, consumer behavior, and other aspects of business analytics in her work with the Amazon Pricing Research and Machine Learning group. A professor of operations management and business analytics at Johns Hopkins University's Carey Business School, she is an expert in understanding how pricing affects customer decisions.

Since becoming an Amazon Scholar in August 2019, Sahin has conducted research in two primary areas: bundle promotions and quantity discounts. Each project uses analytical models to determine which discounts or promotions can benefit both customers and Amazon's retail business.

Bundling and quantity discounts

The bundling project involves nonlinear price discrimination based on an assortment of products. For example, the Amazon Store might display a product grouping and offer a discount if the customer makes multiple purchases within that group. A customer might get 20% off if they buy two or three items within that grouping with the flexibility to build a shopping basket from other items that fall within the promotion.

Related content
Crowdsourcing reveals sources of information that could improve product discovery algorithms.

Sahin developed an algorithm with an embedded economic consumer behavior model that helps determine the best bundled promotion assortment to offer to customers. If a product sells out, or there's a new product that would enhance the quality of the assortment and experience of the consumers, the algorithm updates the choices accordingly.

Her second project focused on quantity discounts, or the opportunity for a customer to pay less when they buy more of a specific product. "There are many benefits to quantity discounts," Sahin says. "Definitely it helps customers save on a per-unit basis, but it also promotes sustainable practices by decreasing the number of shipments."

Buying six bars of soap at once, instead of one bar a month, for example, not only saves money for the customer but also prevents five additional shipments — and the packaging that comes with them.

Related content
How Amazon’s Delivery Experience team acts as a concierge for customers.

In separate research using data unrelated to Amazon, Sahin has found that bundling is effective at boosting sales, and it has an interesting side benefit: People are less likely to return their purchases, which has the environmental upside of mitigating waste.

Insights on inventory flexibility and buyer decisions

In addition to consumer behavior and pricing, Sahin's research covers the value of flexibility in supply and demand.

She provides the example of a hotel offering standard rooms, deluxe rooms, and a presidential suite. The different room tiers provide supply flexibility (i.e, hotels can fulfill standard room demand with a deluxe room); while the ability to discount those rooms on an ad hoc basis offers demand flexibility. The two together, she has found, can be an important tool for both businesses and customers, smoothing out price swings.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

"If you have flexibility in your inventory or resources, and you can change prices over time, and you do it in a coordinated, smart way, the price difference between your products will not fluctuate too much," Sahin says. "So you can offer a more consistent, easy-to-understand product portfolio and pricing menu to your consumers."

In other research, Sahin explored the question of whether more complex pricing options or structures present challenges for shoppers. Sahin has found that this is not the case.

"Interestingly, what we find is customers are really good at making cost-optimal decisions," Sahin says of one study that looked at subscription packages versus pay-per-use.

In follow-up research on sequential purchasing decisions made over time, she and colleagues found again that consumers are savvy about picking the best choice — provided they have frequent feedback along the way. She uses an example of a college student on a fixed-cost meal plan: Learning the menu over time and being able to evaluate the choices against one’s own tastes leads to the smartest use of those limited meals.

Balancing academia and industry

At Johns Hopkins, Sahin teaches business analytics and operations management.

"We teach our students how to use analytical models to make smart decisions," she explains. She is also faculty director of the business school's Innovation Field Project Course, part of an experiential learning series and a core offering for full-time MBA students. The school works with industry partners to come up with business challenges that students work on for eight weeks with the goal of producing data-driven solutions.

Sahin became interested in operations research while she was an undergraduate at Bilkent University in Ankara, Turkey, where she earned a bachelor’s degree in industrial engineering.

Math is beautiful, but it should be relevant. There is an art to writing analytical models that are tractable and also good representations of reality — we’d like to solve and learn from these models.
Ozge Sahin

The industrial focus introduced the idea of using mathematical tools to make business and economic decisions, and Sahin went on to earn master’s and PhD degrees in operations research from Columbia University. Over the past 15 years or so, she has seen operations research evolve significantly.

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

"When I first started, working with data was rare. The focus was on developing new methodologies and deriving theoretical insights," she says. "Now the field has moved to a more data-driven approach. We can see the impact of what we are doing in practice and test our algorithms. It's a change in the right direction."

Sahin learned about the Amazon Scholars program through a conversation in 2018 with Robert Phillips. At the time, Phillips was at Uber and would soon join Amazon, where he was director of pricing research until 2021. Planning a sabbatical, Sahin mentioned that she wanted to spend the time in industry, learning about the new challenges and consumers’ problems.

"Hearing about the Amazon Scholars program, I thought this would be a great way of knowing how business is done at such a big retailer," Sahin says. So she joined the company in that capacity in August 2019.

As she looks ahead, Sahin says she likes thinking about the puzzle of how technology can both delight a customer and provide business solutions. But she doesn't want the process to be just a thought exercise.

"Math is beautiful, but it should be relevant," she says. "There is an art to writing analytical models that are tractable and also good representations of reality — we’d like to solve and learn from these models."

Related content

GB, London
"Are you a MS or PhD student interested in the fields of Computer Science or Operational Research? Do you enjoy diving deep into hard technical problems and coming up with solutions that enable successful products? If this describes you, come join our research teams at Amazon. " Key job responsibilities The candidate will be responsible for the design and implementation of optimization algorithms. The candidate will translate high-level business problems into mathematical ones. Then, they will design and implement optimization algorithms to solve them. The candidate will be responsible also for the analysis and design of KPIs and input data quality. About the team ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We take pride in our algorithmic solutions: We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. We do not shy away from responsibility. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We employ the most sophisticated tools: We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We are open to hiring candidates to work out of one of the following locations: London, GBR
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, and basic familiarity with Python or R, is necessary. Experience with SQL is a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and apply econometric methods to support business decisions, collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Collaborate with business and science colleagues to understand the business problem and collect relevant data. Provide statistically rigorous analysis of data that contributes to business decision-making. Effectively communicate your results to colleagues and business leaders. A day in the life Meet with colleagues to discuss how the business currently works. Discuss ways in which the customer experience could be improved, and what data you'd need to test your hypotheses. Meet with data and business intelligence engineers to build an efficient data pipeline using SQL, spark and other big data tools. Propose and execute a plan to analyze your data, working closely with your econ colleagues. Use Amazon's development tools, coding your estimators in Python or R. Draft your findings for an internal knowledge sharing session. Iterate to improve your work and communicate your final results in a business document. About the team We are a team of four economists that works within the delivery experience org. Our goal is to improve the delivery experience for our customers while reducing costs. This mission puts us in a unique position to influence both the front end customer experience and the supply chain that ultimately places constraints on that experience. This means we often work with and influence teams outside of our own organization. As a result, we have the privilege of working with a diverse group of experts, including those in supply chain, operations, capacity management, and user experience. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
ES, B, Barcelona
"Are you a MS or PhD student interested in the fields of Computer Science or Operational Research? Do you enjoy diving deep into hard technical problems and coming up with solutions that enable successful products? If this describes you, come join our research teams at Amazon. " Key job responsibilities The candidate will be responsible for the design and implementation of optimization algorithms. The candidate will translate high-level business problems into mathematical ones. Then, they will design and implement optimization algorithms to solve them. The candidate will be responsible also for the analysis and design of KPIs and input data quality. About the team ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We take pride in our algorithmic solutions: We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. We do not shy away from responsibility. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We employ the most sophisticated tools: We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We are open to hiring candidates to work out of one of the following locations: Barcelona, B, ESP
IN, TN, Chennai
DESCRIPTION The Digital Acceleration (DA) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms for solving Digital businesses problems. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues BASIC QUALIFICATIONS - Experience building machine learning models or developing algorithms for business application - PhD, or a Master's degree and experience in CS, CE, ML or related field - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. PREFERRED QUALIFICATIONS - 3+ years of building machine learning models or developing algorithms for business application experience - Have publications at top-tier peer-reviewed conferences or journals - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment We are open to hiring candidates to work out of one of the following locations: Chennai, TN, IND
US, VA, Arlington
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: - Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries - Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them - Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Atlanta, GA, USA | Austin, TX, USA | Houston, TX, USA | New York, NJ, USA | New York, NY, USA | San Francisco, CA, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, WA, Seattle
Prime Video offers customers a vast collection of movies, series, and sports—all available to watch on hundreds of compatible devices. U.S. Prime members can also subscribe to 100+ channels including Max, discovery+, Paramount+ with SHOWTIME, BET+, MGM+, ViX+, PBS KIDS, NBA League Pass, MLB.TV, and STARZ with no extra apps to download, and no cable required. Prime Video is just one of the savings, convenience, and entertainment benefits included in a Prime membership. More than 200 million Prime members in 25 countries around the world enjoy access to Amazon’s enormous selection, exceptional value, and fast delivery. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a Data Scientist at Amazon Prime Video, you will work with massive customer datasets, provide guidance to product teams on metrics of success, and influence feature launch decisions through statistical analysis of the outcomes of A/B experiments. You will develop machine learning models to facilitate understanding of customer's streaming behavior and build predictive models to inform personalization and ranking systems. You will work closely other scientists, economists and engineers to research new ways to improve operational efficiency of deployed models and metrics. A successful candidate will have a strong proven expertise in statistical modeling, machine learning, and experiment design, along with a solid practical understanding of strength and weakness of various scientific approaches. They have excellent communication skills, and can effectively communicate complex technical concepts with a range of technical and non-technical audience. They will be agile and capable of adapting to a fast-paced environment. They have an excellent track-record on delivering impactful projects, simplifying their approaches where necessary. A successful data scientist will own end-to-end team goals, operates with autonomy and strive to meet key deliverables in a timely manner, and with high quality. About the team Prime Video discovery science is a central team which defines customer and business success metrics, models, heuristics and econometric frameworks. The team develops, owns and operates a suite of data science and machine learning models that feed into online systems that are responsible for personalization and search relevance. The team is responsible for Prime Video’s experimentation practice and continuously innovates and upskills teams across the organization on science best practices. The team values diversity, collaboration and learning, and is excited to welcome a new member whose passion and creativity will help the team continue innovating and enhancing customer experience. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: 1 Washington Street, Newark, NJ, 07102 Duties: Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL/ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3/edX storage systems. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports into Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s in Statistics, Computer Science, Data Science, Machine Learning, Applied Math, Operations Research, Economics, or a related field plus two (2) years of Data Scientist or other occupation/position/job title with research or work experience related to data processing and predictive Machine Learning modeling at scale. Experience may be gained concurrently and must include: Two (2) years in each of the following: - Building statistical models and machine learning models using large datasets from multiple resources - Non-linear models including Neural Nets or Deep Learning, and Gradient Boosting - Applying specialized modelling software including Python, R, SAS, MATLAB, or Stata. One (1) year in the following: - Using database technologies including SQL or ETL. Alternatively, will accept a Bachelor's and five (5) years of experience. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL135. We are open to hiring candidates to work out of one of the following locations: Newark, NJ, USA
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of audio technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in AGI in audio domain. About the team Our team has a mission to push the envelope of AGI in audio domain, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA
DE, BE, Berlin
Are you fascinated by revolutionizing Alexa user experience with LLM? The Artificial General Intelligence (AGI) team is looking for an Applied Scientist with background in Large Language Model, Natural Language Process, Machine/Deep learning. You will be at the heart of the Alexa LLM transition working with a team of applied and research scientists to bring classic Alexa features and beyond into LLM empowered Alexa. You will interact in a cross-functional capacity with science, product and engineering leaders. Key job responsibilities * Work on core LLM technologies (supervised fine tuning, prompt optimization, etc.) to enable Alexa use cases * Research and develop novel metrics and algorithms for LLM evaluation * Communicating effectively with leadership team as well as with colleagues from science, engineering and business backgrounds. We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU