Priya Ponnapalli, director of applied science at the Amazon ML Solutions Lab, smiles at the camera with her arms folded
As director of applied science at the Amazon ML Solutions Lab, Priya Ponnapalli leads a global team of scientists, engineers, and product managers who help AWS customers identify and implement their most important machine learning opportunities.
Christophe Testi

Helping AWS customers accelerate success via machine learning

Priya Ponnapalli leads the Amazon Machine Learning Solutions Lab, fostering inclusion and growth for her team along the way.

Two hockey players face off over the puck. Which one is likely to prevail? Fans can now get a real-time tip from a new National Hockey League stat, Face-Off Probability, powered by Amazon Web Services (AWS). The in-game hockey probability is just one of many ways machine learning is showing up in daily life, from sports to healthcare to finance.

The possibilities for AWS customers are vast, and many of those ideas are cutting-edge ones that have never been tried before. As director of applied science at the Amazon ML Solutions Lab, Priya Ponnapalli leads a global team of scientists, engineers, and product managers who help AWS customers identify and implement their most important machine learning opportunities.

The demand for her team's expertise is large and growing, according to Ponnapalli, who joined the lab as a principal scientist nearly four years ago. Other AWS sports partnerships include helping to create the National Football League’s real-time Next Gen Stats and new design specifications for F1 race cars.

Discovering machine learning innovations

Sports leagues make up one segment within a broad portfolio of ML Solutions Lab customers that includes automotive, manufacturing, healthcare and life sciences, and financial sector customers.

"We've got nearly 100 engagements with customers globally across all industries, and no two engagements are alike," Ponnapalli says. Her current focus: building a scalable organization needed to support increasing AWS customer demand.

"One of the most important things I do is invest in growing my talent and growing my leaders," she says. "I'm always encouraging my team to think big, look around corners for what’s possible, and anticipate how best we can serve our customers."

Last year, Business Insider named Ponnapalli to its list of 100 people transforming business, recognizing her work in leading businesses into the machine learning landscape.

"I got included along with many heroes that I admire and I just felt very honored," Ponnapalli says. "Of course, it's reflective of all the good work that my team does."

An ML Solutions Lab relationship often begins with a discovery workshop, Ponnapalli explains, where the customer shares what their biggest challenges and opportunities are, as well as what kind of data assets they have. That workshop then informs use cases for the AWS team to envision and build.

"Sometimes customers come to us with an open-ended charter. Others come to us with a very specific problem, like, 'We want to detect acoustic anomalies to monitor equipment performance and anticipate failures on our manufacturing floor,'” she says. "It varies, but our process is rooted in Amazon's working backwards philosophy."

From math to machine learning

Growing up in Hyderabad, India, Ponnapalli always loved math. Because she went to an all-girls school, she says, there was no stereotyping about what one gender could or could not do. Her parents instilled confidence in her as well.

"I've had a lot of strong role models throughout my life. They've all been very inspirational and always made me feel like I could do anything that I wanted to," she says. "I want to be able to create that same environment for others through my leadership of my team."

Related content
The senior economist knows what it means to pursue a career path like hers, and she’s determined to help others along the way.

After earning her bachelor's degree in electronics and communications engineering at Osmania University in Hyderabad, Ponnapalli went to the University of Texas at Austin, where she got her master's and doctorate degrees in electrical and computer engineering.

Coming out of undergrad, she was very interested in digital signal processing. A class in graduate school on signal processing for genomics turned out to be pivotal for her career; the professor of the class, Orly Alter, invited Ponnapalli to join her lab and became her PhD thesis advisor.

Alter's course was also Ponnapalli's introduction to machine learning. Building on that foundation and her thesis, she and Alter co-founded Eigengene, which uses artificial intelligence to analyze cancer genome data and create personalized diagnostics and prognostics. They developed algorithms designed to find patterns within diverse, high-dimensional datasets known as tensors.

As she conducted research related to tensor decompositions, Ponnapalli stumbled across a lot of finance forums where the same questions were being asked. "I realized that these algorithms are data-agnostic. They are industry-agnostic, with broad application within multiple areas," she says.

She dropped off her resume with Bloomberg at a UT Austin career fair late one week, interviewed over the weekend, and got a job offer that Monday. At Bloomberg, she developed a social media analytics tool called Bloomberg Social Velocity that alerted clients to spikes in social activity and market sentiment about companies. Lead data science roles at JP Morgan Chase and Genentech followed.

"I've always enjoyed working at the intersection of multiple disciplines," Ponnapalli says. "I truly believe that's where the magic happens, where there's a lot of cross-pollination of ideas."

The opportunity to work across different industry sectors while maintaining a focus on machine learning led Ponnapalli to apply for a position with the ML Solutions Lab. In addition to her role at Amazon, Ponnapalli teaches machine learning to business leaders as faculty at Rutgers University.

"I'm most excited about solving problems with real-world impact," she says. "Machine learning has the potential to help us solve some of the most complex and challenging problems of our time, like cancer and climate change."

Related content
New programs with Georgia Tech and the University of Southern California are established; existing Columbia University program expands.

She notes that with so many opportunities in machine learning, from scientists to product managers to engineers, anyone with an interest should not be afraid to pursue a job in the field. Given the availability of online resources, she adds, it's never been easier to learn. Plus, the field needs a diverse pool of talent.

"Creating inclusive workspaces is a cornerstone of my leadership style. I've used my position and whatever privilege and success that has come to me to help others and hire a diverse team," she says. "This is a field that impacts all of us — the products that we build need to work for everybody."

Research areas

Related content

US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
CA, BC, Vancouver
Amazon Web Services (AWS) is building a world-class marketing organization that drives awareness and customer engagement with the goal of educating developers, IT and line-of-business professionals, startups, partners, and executive decision makers about AWS services and solutions, their benefits, and differentiation. As the central data and science organization in AWS Marketing, the Data: Science and Engineering (D:SE) team builds measurement products, AI/ML models for targeting, and self-service insights capabilities for AWS Marketing to drive better measurement and personalization, improve data access and analytical self-service, and empower strategic data-driven decisions. We work globally as a central team and establish standards, benchmarks, and best practices for use throughout AWS Marketing. We are looking for a Principal Data Scientist with deep expertise in scaling measurement science, content ranking and rapid experimentation at scale, with strong interest in building scalable solutions in partnership with our engineering organization. You will lead strategic measurement science initiatives across AWS Marketing & Sales ranging anywhere between recommender engines, scaling experimentation and measurement science, real-time inference, and cross-channel orchestration. You are an hands-on innovator who can contribute to advancing Marketing measurement technology in a B2B environment, and push the limits on what’s scientifically possible with a razor sharp focus on measurable customer and business impact. You will work with recognized B2B Marketing Science and AI/ML experts to develop large-scale, high-performing measurement science models and AI/ML capabilities. We are at a pivotal moment in our organization where AI/ML and measurement velocity has reached an unseen momentum, and we need to scale fast in order to maintain it. Your work will be a key input into a few of our key business goals. You will advance the state of the art in measurement at scale. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA
US, VA, Arlington
Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing (WFS) organization is on the front line of that mission by hiring the hourly fulfillment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon has created the Workforce Intelligence (WFI) team. This team will (re)invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team owns multi-layered research and program implementation to drive deep learning, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you. The Data Scientist will be responsible for creating cutting edge algorithms, predictive and prescriptive models as well as required data models to facilitate WFS at-scale warehouse associate hiring. This role acts as an internal consultant to the marketing, biz ops and candidate experience teams covering responsibilities such as at-scale hiring process improvement, analyzing large scale candidate/associate data and being strategic to providing best candidate hiring experience to WFS warehouse associate candidates. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem at Amazon scale? Are you excited by developing and productionizing machine learning, deep learning algorithms and leveraging tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diverse set of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Virtual Try On (VTO) at Amazon Fashion & Fitness is looking for an exceptional Applied Scientist to join us to build our next generation virtual try on experience. Our goal is to help customers evaluate how products will fit and flatter their unique self before they ship, transforming customers' shopping into a personalized journey of inspiration, discovery, and evaluation. In this role, you will be responsible for building scalable computer vision and machine learning (CVML) models, and automating their application and expansion to power customer-facing features. Key job responsibilities - Tackle ambiguous problems in Computer Vision and Machine Learning, and drive full life-cycle of CV/ML projects. - Build Computer Vision, Machine Learning and Generative AI models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Investigate and solve exciting and difficult challenges in Image Generation, 3D Computer Vision, Generative AI, Image Understanding and Deep Learning. - Run A/B experiments, gather data, and perform statistical tests. - Lead development and productionalization of CV, ML, and Gen AI models and algorithms by working across teams. Deliver end to end. - Act as a mentor to other scientists on the team. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities - Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Run A/B experiments, gather data, and perform statistical tests. - Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. - Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA