Emine Yilmaz: An Amazon Scholar advancing the state of the art in voice shopping

Scientist leads team in London focused on improving voice-shopping experiences with Alexa.

Emine Yilmaz is a computer science professor at the University College London (UCL) and a faculty fellow at the Alan Turing Institute. Her research interests include information retrieval and natural language processing. Yilmaz is the recipient of several honors and awards in her career, including a 2018 Bloomberg Data Science Research grant for her work on building task-oriented systems, and a 2015 British Computer Society Information Retrieval Specialist Group Karen Spärck Jones Award for her research contributions in the field of information retrieval.

Emine Yilmaz, an Amazon scientist, sitting at a table with an open laptop in front of her.
Emine Yilmaz, a computer science professor at the University College London, a faculty fellow at the Alan Turing Institute, and an Amazon Scholar, is shown speaking at an Amazon Research Day event. At Amazon, Yilmaz works within the Alexa Shopping Research and Science organization.
Emine Yilmaz

Yilmaz is also an Amazon Scholar, a select group of academics who work on large-scale technical challenges for Amazon while continuing to teach and conduct research at their universities. At Amazon, Yilmaz is leading a research team based in London that’s responsible for improving the Alexa voice shopping experiences.

Given the nascency of the field—the first Echo speaker was launched six years ago—customer satisfaction in voice shopping is an open area of research. Yilmaz is uniquely positioned to drive meaningful innovations in the field. She has been involved with advancing research in modeling user behavior and predicting user satisfaction for her entire career. One example: a recent paper that Yilmaz coauthored with Manisha Verma, “Search Costs vs User Satisfaction on Mobile”, in which they studied the impact of user actions, such as inputting search queries, reading snippets, or scrolling through a search engine result page, on customer satisfaction.

Amazon Science spoke to Yilmaz about her career, her work at Amazon, and why she thinks academics will enjoy working at Amazon.

Q. What drew you to your research interests in information retrieval and natural language processing?

My interest in machine learning was sparked during my undergraduate program. As part of an assignment for a computer science class, we had to implement a machine learning algorithm that would learn to put a number of small rectangles into the smallest rectangle shape possible. I found the concept of a computer being trained to perform tasks fascinating, and decided to pursue a master’s degree in machine learning.

When I began my PhD, web search technology was newly emerging. I was intrigued by how search engines were able to retrieve results relevant to a query in a near-instantaneous manner. There were, and there still are, many open problems in the domain, and nearly all of them can be tackled using principles from machine learning. I thus decided to choose as my area of research machine learning applied to information retrieval (the computer science discipline behind search) and natural language processing.

Q. What are you working on at Amazon?

At Amazon, I’m part of the Alexa Shopping Research and Science organization headed by Yoelle Maarek. Customers interact with Alexa for a variety of shopping-related tasks—from product research to actual purchases. My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.

Q. What are some of the research problems you’re tackling at Amazon?

Annotating customer interactions with pertinent data is critical to training Alexa to get better over time. However, with billions of interactions every week, it isn’t feasible to annotate even a small percentage of those interactions manually.

Further complicating matters is the growing number of experiences that Alexa-enabled devices provide. To give just a few examples, Alexa is available on a wide range of smart speakers, tablets, smartphones, and an ever-increasing array of smart home devices. A successful customer interaction on an Echo device (adding an item to one’s shopping list) can be quite different from that on a tablet (clicking and zooming in on an image).

My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.
Emine Yilmaz, Amazon Scholar

My team applies state-of-the-art natural language processing and machine learning models to predict customer satisfaction across all of these diverse experiences. To do this, our models look at implicit criteria to evaluate whether Alexa helped customers meet their goals. These criteria include search query reformulations, how much time customers spend interacting with search results, or even whether they zoomed in to study a product image in greater detail. By studying patterns in user interactions, we are able to drive improvements to the Alexa voice shopping experience at scale.

Q. How do you see the nascent field of voice shopping evolving?

These are early days for voice shopping. That’s one of the primary reasons this is a fascinating area to be involved with. Similar to mobile phones today, I believe that intelligent voice assistants will become an embedded part of our lives. Shopping using our voice is a much more frictionless experience. Most of us speak faster than we type. With voice agents, you don’t have to take your phone out, unlock it, type out a search term and take a series of steps to complete your request. To give just one example, today you see residents of senior living centers, who would ordinarily struggle using computers, but who are using Alexa to stay connected to friends, family, and the world during COVID-19. Intelligent voice agents are going to be an integral part of our day-to-day lives. I’m really excited to be at Amazon, and have the opportunity to shape the future in how people use voice to conduct research on, and buy products.

Q. How did you come to join the Amazon Scholars program?

I received a call from an Amazon recruiter in 2019, who told me about the Amazon Scholars program. This seemed really intriguing. Indeed, to say that the entire ecosystem around Alexa is cutting edge would be a massive understatement. I was excited at the opportunity to find out more about the kind of problems the team was working on, and to see if I could contribute to their research.

I was also impressed by the investments Amazon has been making in research. At the time, Amazon had recently opened the Cambridge Development Center. They were actively hiring great talent to further innovation in multiple AI disciplines.

Career opportunities in science

See the latest Amazon job openings in machine learning, data science, and much more.

Lastly, I was drawn to working with scientists I’ve always held in high regard —be it Michael Jordan, Thorsten Joachims or Eugene Agichtein. Some of the world’s leading researchers are working as Scholars at Amazon. And given my prior work and research area interests, I was particularly interested in the work of Yoelle Maarek’s team.

Q. How do you balance your work between Amazon and University College London?

At Alexa Shopping, I’m constantly encouraged to write and publish papers at the top research conferences, both within Amazon and at my university. It certainly helps that my research areas in academia and at Amazon are distinct yet aligned. To give just one example, as part of my academic work, I recently coauthored a paper, From Stances' Imbalance to Their Hierarchical Representation and Detection , that was presented at The Web Conference in 2019. In the paper, we proposed a new approach to detecting fake news—news that purports to be factual, but which contains misstatements of fact with intention to arouse passions, attract viewership, or simply deceive. On one hand, the paper is sufficiently distinct from shopping that I can differentiate between my work in academia and at Amazon. On the other hand, the research outlined in the paper can help me invent methods towards ensuring that sellers’ descriptions on product listings are accurate.

Q. In your mind, why would academics enjoy working at Amazon?

First, the caliber of talent at Amazon is very high. I attribute this to the hiring process based on a set of Leadership Principles. The hiring process is concrete and structured, and ensures that we are always meeting a high bar when it comes to recruitment. Because the bar for hiring is so high, I’m constantly learning from my managers, from my peers, and from people who report to me.

I also think academics will readily appreciate Amazon’s “customer obsession”, one of our key Leadership Principles. In my mind, this is the primary reason academics should consider working at the company. Throughout my career, when I’ve thought about research, I’ve also thought about the end application. At Amazon, you have the opportunity to have a positive impact on the lives of millions of people. Staying focused on the customer and working a solution backward makes our research a lot more fulfilling. It also keeps you grounded, and prevents you from drifting into irrelevance, both in academia and within the industry.

Related content

US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, the Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide.
JP, Tokyo
The Amazon Logistics (AMZL) Team is responsible for the acquisition, design, construction, and management of all facilities in the Amazon Delivery Station Network. AMZL is looking for a talented and passionate Data Scientist to help shape its Last Mile business with technical strategies and solutions, by processing, analyzing and interpreting huge data sets. You should be comfortable with ambiguity, problem solving and enjoy working in a fast-paced, diverse and dynamic environment. Using analytical rigor and statistical methods, you mine through data to identify opportunities for Amazon and our delivery channels. And you collaborate with other scientists, engineers, Product and Program Managers to deploy new products and solutions. [More Information] Last Mile Department Data Analyst/BI Engineer Tokyo Office *Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, visit https://www.amazon.jobs/disability/jp Key job responsibilities Creating a roadmap of the most challenging business questions and use data to articulate possible root cause analysis and solutions Managing and executing entire projects or components of large projects from start to finish including project management, data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights Partnering with Product, Program and Engineering teams to design and run models, research new algorithms, and prove incrementality and drive growth Understanding drivers, impacts, and key influences on seller growth dynamics Developing and scaling end-to-end ML Models and solutions Automating feedback loops for algorithms in production Utilizing Amazon systems and tools to effectively work with terabytes of data About the team Last Mile Execution Analytics (LMEA) team of JP works as an integral part of Amazon Logistics to ensure that its business intelligence, analytics, tools and planning needs are met. By providing information, insight, and decision support, we strive to enable success of all parts of AMZL. Our customer set includes senior management, station operations, external vendors, long-term planning, Ops technology (Voice of the Delivery Station, Voice of the Customer), network planning, and pretty much every BI and Ops teams. Voice of Employee [Work Life Harmony] We believe, it is important to spend private time such as spending time with your family or doing anything you like to spur innovation. Amazon promotes a fulfilling and flexible work style according to the work volume and lifestyle of each employee.
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables