Emine Yilmaz: An Amazon Scholar advancing the state of the art in voice shopping

Scientist leads team in London focused on improving voice-shopping experiences with Alexa.

Emine Yilmaz is a computer science professor at the University College London (UCL) and a faculty fellow at the Alan Turing Institute. Her research interests include information retrieval and natural language processing. Yilmaz is the recipient of several honors and awards in her career, including a 2018 Bloomberg Data Science Research grant for her work on building task-oriented systems, and a 2015 British Computer Society Information Retrieval Specialist Group Karen Spärck Jones Award for her research contributions in the field of information retrieval.

Emine Yilmaz, an Amazon scientist, sitting at a table with an open laptop in front of her.
Emine Yilmaz, a computer science professor at the University College London, a faculty fellow at the Alan Turing Institute, and an Amazon Scholar, is shown speaking at an Amazon Research Day event. At Amazon, Yilmaz works within the Alexa Shopping Research and Science organization.
Emine Yilmaz

Yilmaz is also an Amazon Scholar, a select group of academics who work on large-scale technical challenges for Amazon while continuing to teach and conduct research at their universities. At Amazon, Yilmaz is leading a research team based in London that’s responsible for improving the Alexa voice shopping experiences.

Given the nascency of the field—the first Echo speaker was launched six years ago—customer satisfaction in voice shopping is an open area of research. Yilmaz is uniquely positioned to drive meaningful innovations in the field. She has been involved with advancing research in modeling user behavior and predicting user satisfaction for her entire career. One example: a recent paper that Yilmaz coauthored with Manisha Verma, “Search Costs vs User Satisfaction on Mobile”, in which they studied the impact of user actions, such as inputting search queries, reading snippets, or scrolling through a search engine result page, on customer satisfaction.

Amazon Science spoke to Yilmaz about her career, her work at Amazon, and why she thinks academics will enjoy working at Amazon.

Q. What drew you to your research interests in information retrieval and natural language processing?

My interest in machine learning was sparked during my undergraduate program. As part of an assignment for a computer science class, we had to implement a machine learning algorithm that would learn to put a number of small rectangles into the smallest rectangle shape possible. I found the concept of a computer being trained to perform tasks fascinating, and decided to pursue a master’s degree in machine learning.

When I began my PhD, web search technology was newly emerging. I was intrigued by how search engines were able to retrieve results relevant to a query in a near-instantaneous manner. There were, and there still are, many open problems in the domain, and nearly all of them can be tackled using principles from machine learning. I thus decided to choose as my area of research machine learning applied to information retrieval (the computer science discipline behind search) and natural language processing.

Q. What are you working on at Amazon?

At Amazon, I’m part of the Alexa Shopping Research and Science organization headed by Yoelle Maarek. Customers interact with Alexa for a variety of shopping-related tasks—from product research to actual purchases. My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.

Q. What are some of the research problems you’re tackling at Amazon?

Annotating customer interactions with pertinent data is critical to training Alexa to get better over time. However, with billions of interactions every week, it isn’t feasible to annotate even a small percentage of those interactions manually.

Further complicating matters is the growing number of experiences that Alexa-enabled devices provide. To give just a few examples, Alexa is available on a wide range of smart speakers, tablets, smartphones, and an ever-increasing array of smart home devices. A successful customer interaction on an Echo device (adding an item to one’s shopping list) can be quite different from that on a tablet (clicking and zooming in on an image).

My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.
Emine Yilmaz, Amazon Scholar

My team applies state-of-the-art natural language processing and machine learning models to predict customer satisfaction across all of these diverse experiences. To do this, our models look at implicit criteria to evaluate whether Alexa helped customers meet their goals. These criteria include search query reformulations, how much time customers spend interacting with search results, or even whether they zoomed in to study a product image in greater detail. By studying patterns in user interactions, we are able to drive improvements to the Alexa voice shopping experience at scale.

Q. How do you see the nascent field of voice shopping evolving?

These are early days for voice shopping. That’s one of the primary reasons this is a fascinating area to be involved with. Similar to mobile phones today, I believe that intelligent voice assistants will become an embedded part of our lives. Shopping using our voice is a much more frictionless experience. Most of us speak faster than we type. With voice agents, you don’t have to take your phone out, unlock it, type out a search term and take a series of steps to complete your request. To give just one example, today you see residents of senior living centers, who would ordinarily struggle using computers, but who are using Alexa to stay connected to friends, family, and the world during COVID-19. Intelligent voice agents are going to be an integral part of our day-to-day lives. I’m really excited to be at Amazon, and have the opportunity to shape the future in how people use voice to conduct research on, and buy products.

Q. How did you come to join the Amazon Scholars program?

I received a call from an Amazon recruiter in 2019, who told me about the Amazon Scholars program. This seemed really intriguing. Indeed, to say that the entire ecosystem around Alexa is cutting edge would be a massive understatement. I was excited at the opportunity to find out more about the kind of problems the team was working on, and to see if I could contribute to their research.

I was also impressed by the investments Amazon has been making in research. At the time, Amazon had recently opened the Cambridge Development Center. They were actively hiring great talent to further innovation in multiple AI disciplines.

Career opportunities in science

See the latest Amazon job openings in machine learning, data science, and much more.

Lastly, I was drawn to working with scientists I’ve always held in high regard —be it Michael Jordan, Thorsten Joachims or Eugene Agichtein. Some of the world’s leading researchers are working as Scholars at Amazon. And given my prior work and research area interests, I was particularly interested in the work of Yoelle Maarek’s team.

Q. How do you balance your work between Amazon and University College London?

At Alexa Shopping, I’m constantly encouraged to write and publish papers at the top research conferences, both within Amazon and at my university. It certainly helps that my research areas in academia and at Amazon are distinct yet aligned. To give just one example, as part of my academic work, I recently coauthored a paper, From Stances' Imbalance to Their Hierarchical Representation and Detection , that was presented at The Web Conference in 2019. In the paper, we proposed a new approach to detecting fake news—news that purports to be factual, but which contains misstatements of fact with intention to arouse passions, attract viewership, or simply deceive. On one hand, the paper is sufficiently distinct from shopping that I can differentiate between my work in academia and at Amazon. On the other hand, the research outlined in the paper can help me invent methods towards ensuring that sellers’ descriptions on product listings are accurate.

Q. In your mind, why would academics enjoy working at Amazon?

First, the caliber of talent at Amazon is very high. I attribute this to the hiring process based on a set of Leadership Principles. The hiring process is concrete and structured, and ensures that we are always meeting a high bar when it comes to recruitment. Because the bar for hiring is so high, I’m constantly learning from my managers, from my peers, and from people who report to me.

I also think academics will readily appreciate Amazon’s “customer obsession”, one of our key Leadership Principles. In my mind, this is the primary reason academics should consider working at the company. Throughout my career, when I’ve thought about research, I’ve also thought about the end application. At Amazon, you have the opportunity to have a positive impact on the lives of millions of people. Staying focused on the customer and working a solution backward makes our research a lot more fulfilling. It also keeps you grounded, and prevents you from drifting into irrelevance, both in academia and within the industry.

Related content

US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
LU, Luxembourg
The Decision, Science and Technology (DST) team part of the global Reliability Maintenance Engineering (RME) is looking for a Senior Operations Research Scientist interested in solving challenging optimization problems in the maintenance space. Our mission is to leverage the use of data, science, and technology to improve the efficiency of RME maintenance activities, reduce costs, increase safety and promote sustainability while creating frictionless customer experiences. As a Senior OR Scientist in DST you will be focused on leading the design and development of innovative approaches and solutions by leading technical work supporting RME’s Predictive Maintenance (PdM) and Spare Parts (SP) programs. You will connect with world leaders in your field and you will be tackling customer's natural language challenges by carrying out a systematic review of existing solutions. The appropriate choice of methods and their deployment into effective tools will be the key for the success in this role. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Key job responsibilities • Provide technical expertise to support team strategies that will take EU RME towards World Class predictive maintenance practices and processes, driving better equipment up-time and lower repair costs with optimized spare parts inventory and placement • Implement an advanced maintenance framework utilizing Machine Learning technologies to drive equipment performance leading to reduced unplanned downtime • Provide technical expertise to support the development of long-term spares management strategies that will ensure spares availability at an optimal level for local sites and reduce the cost of spares A day in the life As a Senior OR Scientist in DST you will be focused on leading the design and development of innovative approaches and solutions by leading technical work supporting RME’s Predictive Maintenance (PdM) and Spare Parts (SP) programs. You will connect with world leaders in your field and you will be tackling customer's natural language challenges by carrying out a systematic review of existing solutions. The appropriate choice of methods and their deployment into effective tools will be the key for the success in this role. About the team Our mission is to leverage the use of data, science, and technology to improve the efficiency of RME maintenance activities, reduce costs, increase safety and promote sustainability while creating frictionless customer experiences. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA