David Schuster and colleagues' Nature 2004 paper (left) "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics" helped spawn a new field, circuit quantum electrodynamics. Schuster and colleagues' American Physical Society 2007 paper (right) "Charge-insensitive qubit design derived from the Cooper pair box", introduced a new type of superconducting quantum circuit.
David Schuster and colleagues' Nature, 2004, paper (left) "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics" helped spawn a new field, circuit quantum electrodynamics. Schuster and colleagues' American Physical Society, 2007, paper (right) "Charge-insensitive qubit design derived from the Cooper pair box", introduced a new type of superconducting quantum circuit.

David Schuster’s quest to make practical quantum computers a reality

With quantum computers poised to take a big step forward, we speak to an Amazon Scholar who has spent two decades driving the technology to realize its enormous potential.

To become a foundational player in the creation of a potentially world-changing technology requires the happy conjunction of talent and timing. Both can be found in physicist David Schuster, who is pioneering the technology underpinning quantum computers.

Amazon Scholar David Schuster is seen inside his lab
Amazon Scholar David Schuster joined the AWS Center for Quantum Computing in October 2020.

Schuster became an Amazon Scholar in October 2020, joining the newly established AWS Center for Quantum Computing. Passionate about computers and physics, it was during Schuster’s undergrad studies at Brown University in the early 2000s that he became aware of the nascent field of quantum computing.

“As soon as I heard about it, I was taken with the idea that I could be involved in building a completely new type of computer,” says Schuster. He saw this chance for what it was, a colossal stroke of right-place-right-time good fortune. “The opportunity to make an impact at such a fundamental level was very exciting.”

To appreciate why quantum computing has such potential, compare it to regular, or “classical”, computers. A classical computer uses digital bits to perform computations, with each bit representing either 0 or 1 at any given time. In simplistic terms, increasing the number of bits available to interact with each other increases the computational power of a computer in an additive, linear fashion. A top-end laptop will boast 32 gigabytes of RAM, which is 256,000,000,000 bits.

Related content
New phase estimation technique reduces qubit count, while learning framework enables characterization of noisy quantum systems.

A quantum computer, by contrast, uses quantum bits (qubits) to perform calculations. Each qubit can be in a simultaneously 0 and 1 at any given time. As a result of this “quantum superposition” – which only occurs at the tiniest scales – increasing the qubits results in an exponential explosion in computational power. It is estimated that a fully functional quantum computer with as little as 100 qubits could outsmart today’s most powerful supercomputers for appropriately chosen problems.

Because of the tiny scale and extreme conditions at which qubits exist, it is very difficult to create and control them, but they can nevertheless be made by harnessing a variety of quantum particles, including charged atoms, the directional spin of electrons, and photons.

But it was an experiment published just as Schuster entered grad school at Yale University that demonstrated that a superconducting circuit could be turned into a qubit, though the quantum effect lasted for less than a nanosecond. “In those early days there was a small number of people working in the field,” he recalls, “and a fundamental question was whether you could even make a circuit quantum. They were able to see it as a direct observation!”

Our approach was unique in that we leveraged powerful ideas from atomic physics and mapped them onto circuits, to build circuits that behaved like atoms
David Schuster

Duly inspired, during his PhD research in physics at Yale, Schuster and his colleagues had bold ideas about how to improve the quantum circuit and create new ways of measuring its quantum state. “Our approach was unique in that we leveraged powerful ideas from atomic physics and mapped them onto circuits, to build circuits that behaved like atoms.”

The circuit-based qubit they created contained cavities and could trap and interact, or couple, with a single microwave photons to create a two-level quantum system, with the levels representing 0s and 1s. Published in Nature in 2004, the landmark paper helped to create a new field — circuit quantum electrodynamics.

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

Using such circuits as the basis of a qubit has many benefits, says Schuster. One of those is that the cavities help to protect the fragile quantum state against external interference while also allowing the qubits to interact strongly with each other, which is essential for computation.

In 2007, Schuster and his colleagues published another landmark paper, this time in Physical Review A. In it, they introduced a new type of superconducting quantum circuit, coining the term “transmon”. More cunning physics had resulted in a drastic reduction in sensitivity to external noise and an increase in the qubit-photon coupling, while maintaining the ability to control the qubits. The relatively simple transmon has become an industry standard, forming the basis of efforts at Amazon and other computing giants. Some consider the transmon the “transistor” of superconducting quantum computers.

In 2010, Schuster moved to the University of Chicago, where he set up his lab, which explores and develops a range of quantum technologies. This year, for example, the Schuster Lab team published research revealing what they dubbed a “quantum flute”, a piece of hardware able to control multiple microwave photons simultaneously. The team called the work an important step towards efficient quantum RAM and quantum processors.

A tour of David Schuster's quantum computing lab

This year, Schuster is moving to the applied physics department at Stanford University, with the rest of his lab joining him there in 2023. For the rest of 2022, however, most of Schuster’s time will be spent working at the Center for Quantum Computing.

One of the key challenges of quantum systems is that quantum states are incredibly fragile. Consider a regular computer, in which a single bit might consist of a billion electrons sloshing back and forth, with their location representing a 0 or a 1.

“If some electrons get lost, that’s OK. And redundancy is built in. But in the case of a qubit, there’s just one photon and no redundancy,” says Schuster. “And beside the possibility of losing the photon altogether, the slightest noise from the environment can disturb the quantum superposition, creating errors.” This risk of noise is one of the reasons quantum computing typically requires superconducting materials and temperatures very near absolute zero to operate at all.

And the fact that quantum states can only be maintained for a very brief time compounds the error problem.

Related content
The head of Amazon Web Services’ quantum communication program on the Nobel winners’ influence on her field.

“I like to joke that my goal is to make qubits last for the blink of an eye,” says Schuster. Right now, state-of-the-art devices with multiple qubits might boast decoherence times of around 100 microseconds (0.0001 seconds), he says.

Decoherence means the loss of the fragile quantum state. This loss of information results in small computation errors that can quickly multiply, potentially making any output useless. And the more qubits in play, the more quickly errors can accumulate. With leading quantum processors currently containing up to a few hundred qubits (of a variety of natures), we are in what Caltech theoretical physicist and Amazon Scholar John Preskill termed the “noisy intermediate-scale quantum” (NISQ) era.

“By the time we get about 100 qubits interacting with each other, the errors become so great you can't really do much, so there's no point making a 1000-qubit system yet,” says Schuster.

Decoherence is a tractable problem, though, and it is being relentlessly addressed by researchers including Schuster and members of his lab. Fortunately, however, decoherence does not need to be totally overcome before quantum computers can successfully scale up.

Already, the accuracy of the qubits in Schuster’s quantum systems is well over 99%. In fact, as a scientific field the accuracy is getting so high that a threshold is approaching, says Schuster, beyond which sophisticated error-correcting algorithms will be able to counteract the remaining problems caused by the fragility of the qubits.

Related content
How an Amazon quantum computing scientist won the first-ever quantum chess tournament.

“Once we get our error rate low enough, scaling up will actually result in even fewer errors,” he says. “Amazon's effort is focused on getting to this goal of error correction, because then we can truly make a large-scale quantum computer.”

Schuster is two decades into his quantum journey. Is it getting any easier?

“When I started it all felt impossible, but we just tried it anyway,” he says. “Now, the problems no longer necessarily seem impossible, but they are still extremely difficult.”

So why join Amazon now?

Amazon’s efforts are experimental and bold — they are trying different approaches. I think Amazon understands the true magnitude of the challenge and the ultimate value of quantum computing.
David Schuster

“The quality of the team was very appealing,” he says, “and Amazon’s efforts are experimental and bold — they are trying different approaches. I think Amazon understands the true magnitude of the challenge and the ultimate value of quantum computing to their customers through Amazon Web Services, so they are patient.”

It is well known that the arrival of quantum computing will have enormous implications for online security and encryption, because the highest levels of protection currently being employed to protect online data will not stand up to the sheer power of quantum computers. Quantum computing will bring with it uncrackable encryption.

Security implications aside, what other useful applications might we expect? There are entire classes of scientific problems that are intractable to classical computers that should succumb to quantum efforts, says Schuster. He is personally excited about the potential to better understand materials in which quantum mechanics plays an important role.

“Many special materials involve complex quantum interactions that we don't understand and, right now, about 30% of supercomputer capacity goes to solving quantum mechanical problems,” he says.

It is inefficient to solve quantum mechanical problems on a classical computer, he adds. “Very small quantum systems that involve 20 particles or states, you could maybe solve on a laptop. But if it involves 50, even the world's biggest supercomputer can't really do very much with it.”

Such research carried out on quantum computers could have big impacts on the discovery of new materials for renewable energy, computing, chemistry, medicines, and more.

There are also some surprising possibilities for Schuster’s quantum circuits.

“I never would have expected this, but I ended up getting involved in searching for dark matter,” he says. There is a type of proposed dark matter — low mass bosons — that would occasionally interact with ordinary matter, resulting in the production of a single microwave photon. And as luck would have it, Schuster’s qubit circuits are able to trap and measure these photons.

“We can use our qubits to detect these newly created photons,” he explains, “making the search for this type of dark matter about 1000 times faster!”

Research areas

Related content

US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.