3 questions with Antia Lamas-Linares about the Nobel Prize in physics

The head of Amazon Web Services’ quantum communication program on the Nobel winners’ influence on her field.

Last week, the Swedish Academy announced that John Clauser, Alain Aspect, and Anton Zeilinger had won the Nobel Prize in physics “for experiments with entangled photons, establishing the violation of Bell inequalities, and pioneering quantum information science”.

Antia Lamas-Linares, quantum networking lead at Amazon Web Services and an expert in quantum optics, is seen looking into the camera
Antia Lamas-Linares, a principal research scientist with Amazon Web Services (AWS) and head of the AWS Center for Quantum Networking.

When two quantum subsystems — particles, atoms, or molecules — are “entangled”, then measurements performed on one are correlated with measurements performed on the other. The experimental setup that Clauser, Aspect, and Zeilinger investigated — in which entangled quantum subsystems have been widely separated — is closely related to those used in modern quantum networks.

The first application of quantum networking is likely to be quantum key distribution, in which two parties exchange private cryptographic keys and use quantum entanglement to ensure that their communication channel hasn’t been compromised.

On the occasion of the Swedish Academy’s announcement, Amazon Science asked Antia Lamas-Linares, who leads Amazon Web Services’ Center for Quantum Networking, three questions about Clauser, Aspect, and Zeilinger’s work and its implications for her own field.

  1. Q. 

    One of the things that Clauser and Aspect did to win the Nobel Prize was a set of experiments that challenged the “hidden-variable hypothesis”. What is the hidden-variable hypothesis, and what were their experiments?


    At the beginnings of quantum mechanics, when people started looking at this theory that was really successful at doing things like predicting the spectra coming out of atoms, and they started looking at the implications for how we understand physical theories, there was this epic battle that went on for years between Einstein and Bohr, two giants of early 20th-century physics.

    The problem was that as you look deeply into the theory, you realize that there is, for example, inherent randomness. You can prepare a couple of systems in identical ways, and you measure something about the system, and the outcomes are different. And they are different for very fundamental reasons. It's not just, oh, we just didn't have enough information. No, even with perfect information, the outcomes of identical measurement can be different. This was not compatible with how physical theories were supposed to work.

    Entanglement has made this progression from being an uncomfortable property of quantum systems — and a philosophical question — to something that constitutes the basis of quantum technologies.
    Antia Lamas-Linares

    It became a sort of hobby of Einstein’s to come up with little paradoxes based on these things that challenged the way we understand physical theories, from a very foundational point of view. In quantum mechanics, you can formally write something that we call an entangled state, and this is a state that involves more than one particle or more than one subsystem. It describes correlations between parts of that system.

    Einstein’s point was, if I take the two subsystems and separate them very far away, then I can measure something on one and know the outcome in the other one instantaneously, or faster than light communication, which is not compatible with relativity. His conclusion was that there must be an underlying theory that “explained” the quantum-mechanical correlations and the apparent randomness of measurement outcomes.

    Essentially, the results look random because there are these hidden variables that we don't know about. But if we knew their values, the results would be predictable. These theories became known as “hidden variable” theories.

    It wasn't until the ’60s that John Bell wrote a beautiful, very simple theorem where he said, let's assume that there is some underlying information, some underlying physical theory that works in this general way. Can I have a set of measurements that have different outcomes from the quantum-mechanical model?

    Related content
    New method enables entanglement between vacancy centers tuned to different wavelengths of light.

    This is called the Bell inequality. It says, if you measure a particular sequence of correlations and you get a value below a certain threshold, then there could be an underlying hidden-variable theory of quantum mechanics. But if the value is above this threshold, then quantum mechanics cannot be explained by hidden variables. At this point, no matter how uncomfortable we are with the implications of quantum mechanics, we don’t get to pretend there is an underlying theory that will explain it all away.

    It really changes our perception of the nature of reality. The randomness in measurement results is fundamental to nature. It's not just an accident from the lack of information about the hidden variables.

    Eventually, people said, Well, okay, let's test these things. For that, you need to make entangled particles, and you need to measure them in the way prescribed by Bell’s theorem. That's essentially what John Clauser and Alain Aspect did during the late ’70s and early ’80s, with increasing levels of sophistication. Anton Zeilinger wasn't part of those Bell inequality measurements, but he used entanglement in a multitude of ground-breaking experiments, such as quantum teleportation, entanglement swapping, and the generation of tripartite entangled states.

    Clauser experiment
    In his original experiment, John Clauser used irradiated calcium atoms to emit pairs of entangled photons and polarizing filters to measure correlations between their polarizations.
    Adapted from a figure by Johan Jarnestad for the Royal Swedish Academy of Sciences

  2. Q. 

    So what does this all have to do with quantum networking?


    With quantum networking, the two sides start by sharing entangled particles. The idea is that the outcomes on both sides are perfectly correlated, but if a malicious party tries to measure in-between, the correlations are broken, and this is detectable by the legitimate parties. It's related to the fact that quantum mechanics has properties like the no-cloning theorem that ensure that unknown quantum states cannot be perfectly copied. So you cannot just take any particle that is coming by and make a copy, because this inevitably alters the original state.

    Related content
    Collaboration will seek to advance the development of a quantum internet.

    So the two sides take a subset of the results, and using classical communication, they say, Hey, let's check that nobody has interfered with our measurements. What did you get for the first one? How about number 3,047? And they can check that the correlations are as expected from quantum theory. They sacrifice maybe 10% of their data to check this, and if the correlations hold, they can be sure that nobody has otherwise tampered with the entangled particles.

    Now to be clear, they're not sharing a message. They're sharing correlated random numbers, obtained from measurements on the entangled pair of particles. Correlated random numbers are exactly what you need for a symmetric cryptographic key. When you use a key as part of a cryptographic system, you need two parties to share a secret. It doesn't matter what the secret is, as long as it is not predictable. In this way quantum mechanics gives us the two requirements for a cryptographic key: randomness and privacy.

  3. Q. 

    It’s been 50 years since Clauser’s original experiment. How has our thinking about these questions changed in the interim?


    What’s exciting about this is that entanglement has made this progression from being an uncomfortable property of quantum systems — and a philosophical question — to something that constitutes the basis of quantum technologies. We no longer consider entanglement an uncomfortable consequence of quantum mechanics. It is now a resource.

    Related content
    Among the ‘first wave’ of scientists to gain a PhD in quantum technology, the senior manager of research science discusses her two-decade-long career journey.

    Alain Aspect has said that when he was doing his PhD, he was repeatedly discouraged from pursuing these experiments because working on the foundations of physics was a career killer. This is not what you do if you want to be successful.

    My own PhD centered on building entanglement sources, which is a very engineering-focused task. I needed to engineer a system — in my case, a nonlinear crystal — to give me higher-quality entangled photon pairs. I wasn’t trying to prove philosophical questions regarding entanglement.

    You could consider large parts of what Oskar [Painter, head of quantum hardware at Amazon Web Services] does and what I do as “entanglement engineering”. Our groups in AWS do quantum engineering, and entanglement is a vital resource that we produce, channel, and measure. That is a pretty radical evolution from where things stood when John, Alain, and Anton did their groundbreaking work.

Research areas

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000