Antia Lamas-Linares, quantum networking lead at Amazon Web Services and an expert in quantum optics, is seen looking into the camera
Antia Lamas-Linares, quantum networking lead at Amazon Web Services and an expert in quantum optics, was among the ‘first wave’ of scientists to gain a PhD in quantum technology.

Antia Lamas-Linares’s path into the world of quantum

Among the ‘first wave’ of scientists to gain a PhD in quantum technology, the senior manager of research science discusses her two-decade-long career journey.

In January 2021, Antia Lamas-Linares joined Amazon Web Services (AWS) to work on quantum technologies.

A quantum information scientist, Lamas-Linares is an expert in quantum optics. More precisely, in photonic (optical) implementations of quantum-information protocols. Her career to date includes pioneering research on quantum key distribution — formerly known as quantum cryptography — superconducting single-photon detectors and space-based quantum technology (including several patents), in addition to high-performance computing.

Related content
Researchers affiliated with Amazon Web Services' Center for Quantum Computing are presenting their work this week at the Conference on Quantum Information Processing.

Quantum science and technologies are evolving fast, and for the first time, small prototype quantum computers are appearing around the world. Indeed, the Amazon Braket service provides access to these computers for researchers and institutions. AWS itself announced the opening of its Center for Quantum Computing in October 2021. While quantum processors already exhibit some interesting quantum mechanical behaviors, they have some way to go before they outperform “classical” computers in truly disruptive ways.

Quantum computers work through the manipulation of quantum bits, known as qubits, instead of conventional digital bits. Lamas-Linares joined AWS to focus on research related to connecting quantum devices with each other.

“You can think of quantum computing as dealing with stationary qubits and quantum networking as dealing with ‘flying qubits’ – qubits going from A to B,” says Lamas-Linares.

Quantum networking

To understand the coming importance of quantum networking, first consider a central disruption that quantum computers are ultimately expected to deliver: a potential, future threat to modern digital security. That is because quantum computers have the potential to outperform classical computers, including the ability to break encryption methods currently relied on for modern communications and data security.

The center's mission is to address fundamental scientific and engineering challenges and to develop new hardware, software, and applications for quantum networks.

“This once-remote threat of a hypothetical quantum computer breaking modern encryption is becoming less of a hypothetical and more of a ‘not if but when’,” says Lamas-Linares.

One potential solution to this challenge would be go “full quantum” in how information is protected in the first place, says Lamas-Linares, using quantum encryption keys.

“One of the main applications — and low-hanging fruit — of quantum networking is the ability to distribute those keys securely. This involves exploiting the inherent randomness and correlations that exist in quantum systems to create perfectly secure correlated numbers that can then be used for cryptography.”

In short, quantum networking has the potential to also deliver perfect privacy. It would be easy to fall down a quantum rabbit hole here. Suffice it to say, quantum entanglement — a fundamental quantum phenomenon — can be exploited to distribute these keys in such a way that no intermediary company involved in the warehousing or transmitting of data would be able to access that data.

The challenge and promise of quantum computing | Amazon Science

Only the possessor of the quantum keys — the data owners — can decrypt and access that data. In the future, such perfect protection of customer data will be crucial to every organization, from financial institutions and governments to hospitals and industry. The goal of quantum key distribution is to securely transmit those keys to where they need to be.

“At AWS we often say that security is job zero — more important than any other priority. That’s because if customers don't trust the cloud, then most business models just won’t work in the cloud. Customers need confidence that their data and transactions are secure,” says Lamas-Linares.

Mathematical games

The first quantum cryptography protocol, theoretical but provably secure, was called BB84 and published in 1984. At the time, a young Lamas-Linares was growing up in Santiago, Spain, busily getting hooked on mathematics and physics: she did not yet speak English, but recalls her parents owned the Spanish translation of a collection of classic “Mathematical Games” columns from Scientific American, written by Martin Gardner.

“That really caught my attention — I was fascinated,” says Lamas-Linares. Later, in 1988, Stephen Hawking’s “The Brief History of Time” further captivated her. “It’s kind of a cliché, but that book set me on my path.”

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

It was a path that took Lamas-Linares to study physics at the University of Santiago de Compostela. After graduating, Lamas-Linares moved for a year to the University of Sheffield, UK, via the European Union’s Erasmus student exchange program, before spending a year completing a master’s in applied optics at Imperial College London.

Why the focus on optics?

[Optics] is one of these fields in physics where you can literally see the things that are happening. If you study optics from a mathematical point of view, it’ll tell you something that you can recreate perfectly with light and lenses.
Antia Lamas-Linares

“It’s one of these fields in physics where you can literally see the things that are happening. If you study optics from a mathematical point of view, it’ll tell you something that you can recreate perfectly with light and lenses. I thought that was really cool,” she said.

Then Lamas-Linares started learning about quantum optics, and so-called “squeezed states” of light. Being quantum, and therefore tiny, this is physics you cannot see with your eyes, but she thought it was cooler still. In 2003, Lamas-Linares completed her doctorate in physics at the University of Oxford.

Lamas-Linares’s subsequent career has continued an international trend. Highlights include becoming an assistant professor at the National University of Singapore (NUS), where she soon set up a new quantum optics lab and became principal investigator at the university’s Centre for Quantum Technologies. She later became a senior research fellow at the US National Institute of Standards and Technology in Boulder, Colorado, and a research associate doing high performance computing at the Texas Advanced Computing Center in Austin.

Moving into industry

When Lamas-Linares made the move from academia to industry, it was to join an NUS spinout company, SpeQtral, as chief quantum scientist in 2019. The switch resulted from an itch for her work to have more direct real-world impact.

“Academia is full of what we call hero experiments, where you make something work once, but maybe afterward it self-destructs or melts or something; the important thing is you showed something was possible; a viable effect. That’s great, but it’s nowhere near what you need to create a useful technology,” says Lamas-Linares. “First and foremost, I'm an experimentalist — I build devices. And I wanted to build robust versions of useful technology. That sort of engineering challenge doesn’t make sense for academia — you have to go to industry. I want to bring quantum technologies to the point where it is the ‘best’ solution to a technical problem and so it becomes part of the standard toolbox.”

Women in Quantum Summit - Antia Lamas Linares

SpeQtral pioneers the development of miniaturized sources of quantum-entangled photons, designed to be deployed on satellites as a means to distribute quantum keys around the Earth. The company has successfully demonstrated such miniaturized technology in space, using its shoebox sized “cubesat”, SpooQy-1.

“SpeQtral had already put an entanglement source in space when I joined as chief quantum scientist,” Lamas-Linares recalls. “By this time I’d been working in the field for two decades, having done a lot of work on entanglement sources, but also on whole systems designed to implement quantum key distribution systems over free space, and in hacking those same systems to show which parts needed further thought.”

While at SpeQtral, industry networking meant Lamas-Linares talked with Amazon about this technology. “That’s how I became more aware of what that Amazon was doing things in quantum technologies,” says Lamas-Linares. “It turned out that one of my former colleagues, Simone Severini, was working at AWS in quantum computing. One day he said to me: ‘Hey, we're doing really interesting stuff. Would you be interested in joining us?’.”

What was it that Severini saw in Lamas-Linares?

“I’ve known Antia professionally for about 20 years, and have always been struck by her adaptability and the fact that she is a real ‘owner’,” he says. “Ownership is fundamental in a complex, pioneering environment like this. Nobody is telling you exactly what to do — you have to find your own way, and push when you find friction. “Antia fits Amazon very well — she has a strong bias for action.”

Amazon’s appeal

For Lamas-Linares’s part, she was attracted to Amazon’s resources, capability, and very long-term vision.

“Amazon is only interested in building things that have a clear application and benefit for their customers, but if they are convinced of that customer value, they will invest for as many years as necessary to reach the required level of technological readiness,” she explained. “That’s exciting, and it’s much harder to do in the start-up/venture capitalist environment, particularly with complicated hardware products.”

Related content
New phase estimation technique reduces qubit count, while learning framework enables characterization of noisy quantum systems.

One of the main challenges in making strides in quantum networking, says Lamas-Linares, is technological integration.

“Whatever quantum technology you develop, before it can be of any use to your customers, an entire ecosystem of additional technology needs to be built up around it, and the people needed to do that barely exist for quantum technologies. Finding that combination of expertise and building the required tools is a non-trivial challenge.”

As quantum technologies are taken up by industry, we’re starting to make the molds for what quantum engineers will be. That, to me, is really exciting.
Antia Lamas-Linares

The sheer newness of many quantum technologies makes it tricky to orchestrate a successful career in the field. Does Lamas-Linares, herself in the first wave of scientists to gain a PhD in quantum technology, have any advice to offer?

“I am definitively not qualified to give anyone advice, but I would say this: Don’t be afraid to take an unconventional path. Especially in emerging fields like this, you just don’t know what the right combination of skills and experience will turn out to be.”

Lamas-Linares points out that “quantum engineers” don’t really exist as yet.

“Engineers take established knowledge and they perfect it. As quantum technologies are taken up by industry, we’re starting to make the molds for what quantum engineers will be. That, to me, is really exciting.”

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, WA, Bellevue
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The Alexa Sensitive Content Intelligence (ASCI) team owns the Responsible AI and customer feedback charters in Alexa+ and Classic Alexa across all device endpoints, modalities and languages. The mission of our team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, (3) build customer trust through generating appropriate interactions on sensitive topics, and (4) analyze customer feedback to gain insight and drive continuous improvement loops. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.