Sergey Menis is seen outside on a sunny day with a colorful landscape of mountains behind him, Sergey is standing to the left with his arms crossed, looking into the camera
Sergey Menis developed the nanoparticle platform that underpins a promising HIV vaccine candidate. The nanoparticle Menis designed snaps together with a protein, eOD-GT8, which is optimized to stimulate production of the rare antibodies that can eventually become bnAbs.
Courtesy of Sergey Menis

Amazon scientist Sergey Menis contributes to development of vaccine approach against HIV

"I hope we have accelerated HIV vaccine development by providing findings that we and others can build on."

About 16 years ago, Sergey Menis was volunteering at a protein design lab during the day and parking cars at night. He'd come to the Baker Lab in Seattle on a whim. While earning his master's degree in bioinformatics at Chalmers University of Technology in Sweden, he read a 2003 paper describing the lab's work designing a novel protein that didn't exist in nature.

"I was just in awe of that power," Menis recalled. He wanted to learn more about biochemist David Baker's work and emailed asking to join the lab, which is based at the University of Washington. Once there, he opted to work with Bill Schief, a postdoctoral researcher with Baker who was just starting his own lab. But Schief noticed Menis wasn't fully present in his work — he often seemed sleepy. What was going on?

Related content
Using social media data, the University of Maryland's Philip Resnik aims to help clinicians prioritize individuals who may need immediate attention.

Menis explained about the night job at the car park. He wanted to do more at the lab, but after all, he had to pay rent. Schief asked how much Menis needed to cover his expenses. Then he hired him.

That job was a turning point.

Schief and his team, along with Menis, developed a breakthrough approach to a vaccine for HIV. In February 2021, the nonprofit scientific research organizations IAVI and Scripps Research announced exciting results in a phase 1 clinical trial — called IAVI G001 — of the Schief lab's vaccine candidate. A phase I trial represents the first time a vaccine is tested in humans, one step in what is typically a four-phase process that determines its safety, efficacy, and proper dosage. In this case, the promising vaccine produced the desired immune response in 97% of participants.

HIV vaccine approach succeeds in first clinical trial

Earlier this year, building on those results, IAVI and Moderna announced that first doses had been administered in a new clinical trial of the experimental HIV vaccine. IAVI officials noted this portion of the phase 1 trial, called IAVI G002, will test the ability to prime and further mature the desired immune response using Moderna’s messenger RNA (mRNA) delivery platform used for their coronavirus vaccines. The mRNA platform enables rapid vaccine production that may dramatically accelerate the development timeline.

Guided by curiosity

Menis, who joined Amazon as a scientist in November 2020 and is now a solution architect with Amazon Web Services (AWS), hadn't set out to be a biomedical researcher, or even a scientist. "I never had a career in mind, in general," he said. "I would just follow whatever looked interesting."

As an undergrad at the University of Florida, that meant computer science. It wasn't until he had obtained his master's degree in software engineering and begun working at the defense and aerospace company Lockheed Martin that he started to rethink his career path.

Related content
Dr. Kristina Simonyan and her team created an AI-based deep learning platform that offers patients some peace of mind.

Writing software for government contract projects was fine, but it didn't feel hands-on enough. "I wanted to see more feedback and results, faster," Menis said.

He recalled a bioinformatics elective class that he'd taken while in grad school at the University of Central Florida. On another fateful impulse, he decided to look at bioinformatics grad programs; this time in Europe, as he was in search of a change of scenery. He got accepted to Chalmers University of Technology and, without knowing much about the university, headed to Sweden.

"Even though it's a well-known school in certain circles, I wasn't even sure it was a real school until I arrived there," he said, laughing. "But it turned out to be a fantastic school and a really intense program."

And when he read about David Baker's work in inventing a protein molecule from scratch, the next chapter of his career — computational protein design — began to unfold.

HIV: a formidable foe

Human immunodeficiency virus has infected more than 75 million people and killed more than 32 million since the epidemic began in early 1980s. With the isolation of the virus in the mid-1980s, it seemed that a vaccine was in the offing. But conventional approaches, which involve taking some inactivated part of the virus to stimulate an immune response, have not worked for HIV.

The virus has multiple wily strategies it employs to hide within the body. It cloaks itself with sugars that make it nearly invisible to the human immune system. And its surface is always changing, a series of disguises that fool most enemy antibodies. But researchers have identified a ray of hope buried within the immune system: the potential to make bnAbs, which can recognize and defeat 99% of HIV strains.

Sergey Menis is seen in a lab setting, wearing gloves while holding a device
Sergey Menis said when he read about David Baker's work in inventing a protein molecule from scratch, the next chapter of his career — computational protein design — began to unfold.
Courtesy of Sergey Menis

The problem is, people don't develop bnAbs until they're years into an infection. “That's too little, too late," Menis said. "By the time you've actually started developing the responses you need, you're already productively infected."

The strategy researchers are pursuing is to initiate the process of making these potent antibodies before infection occurs, giving the body a head start. To do so, they must identify the right "baby antibodies," as Menis calls them, and train them to be bnAbs.

Given that the human body has the ability to make an estimated 1 quintillion unique antibodies, finding and training the right ones is a needle-in-the-haystack endeavor. And only certain antibodies have the ability to become bnAbs—those baby antibodies are literally one in a million.

Only a small fraction of people with HIV develop the most potent bnAb response — the kind an effective vaccine would elicit — on their own. Researchers have been able to zero in on these antibodies by analyzing blood from HIV-positive donors. But there's good news, and the recent clinical trial confirmed it.

Related content
Politecnico di Milano professor Stefano Ceri is working to integrate genomic datasets into a single accessible system with the support of an Amazon Machine Learning Research Award.

"Nearly everyone in the world should have the cells needed to start the process of producing this immune response," Menis said. "To get that process started, we need to find them, stimulate them, and have them multiply."

Building a vaccine platform

After Menis began working at Baker Lab, he decided to pursue a PhD in biochemistry at the University of Washington in the Schief lab. Menis moved to San Diego midway through his PhD studies when Schief moved his lab to Scripps Research and IAVI.

"Sergey is very thoughtful and calm, with meticulous attention to detail. He is curious about how things work," said Schief, who is executive director of vaccine design for IAVI’s Neutralizing Antibody Center (NAC) at Scripps Research and a professor in the Department of Immunology and Microbiology at Scripps.

Schief advised Menis on his PhD thesis, during which Menis developed the nanoparticle platform that underpins the HIV vaccine candidate. The nanoparticle Menis designed snaps together with a protein, eOD-GT8, which is optimized to stimulate production of the rare antibodies that can eventually become bnAbs. The eOD-GT8 protein was developed primarily by another PhD student in the Schief lab, Joe Jardine. The nanoparticle amplifies the body's response by delivering multiple copies of eOD-GT8.

A computer image of the eOD-GT8 immune-stimulating protein.
A computer image of the eOD-GT8 immune-stimulating protein.
Courtesy of Sergey Menis

"It's spherical, like a virus, so the immune system treats it as if it might be a virus of some kind," Menis said. "We want to make it look like a little virus, even though it has no infectious properties whatsoever."

Menis served as the Schief lab's subject matter expert during the multi-year process of developing the vaccine candidate. "He played a big role in planning and carrying out the clinical trial," Schief said.

A team effort

Both Menis and Schief are careful to emphasize that there is much more to do before an approved HIV vaccine becomes reality. While the results from IAVI G001 are encouraging, there are significant milestones remaining.

"By demonstrating that this concept works in humans, and actually can work very well in terms of eliciting strong and consistent responses of the kind we wanted, I hope we have accelerated HIV vaccine development by providing findings that we and others can build on," Schief said.

Related content
Amazon Research Award recipient Jonathan Tamir is focusing on deriving better images faster.

Menis is also quick to credit the 48 volunteers who participated in the IAVI G001 clinical trial, noting that without such volunteers, a vaccine wouldn’t be possible. "They are the co-creators of this effort," he said. Schief and Menis also praised the work of many other individuals, particularly colleagues at Fred Hutch, George Washington University, and the NIH Vaccine Research Center.

The upcoming IAVI G002 will recruit 56 volunteers across four sites: GWU School of Medicine and Health, Hope Clinic of Emory Vaccine Center in Atlanta, Fred Hutchinson Cancer Research Center in Seattle, and the University of Texas–Health Science Center at San Antonio. The goal: replicate the priming of “baby antibodies” observed in IAVI G001 and teach them to take a step towards becoming a bnAb capable of neutralizing HIV.

An intriguing offer

Menis was working at IAVI and preparing to go on vacation when Amazon contacted him in 2020, asking whether he'd be interested in a position at the company. The hiring process happened quickly: He did an interview while on the trip, and on his first day back from vacation, he had an offer in his inbox.

"When Amazon reached out, I was really intrigued by the possibilities of what a giant like Amazon could be doing," Menis said. "I was open to discovering what that meant."

Related content
Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

After spending a little over a year as a research scientist, Menis moved into a senior product manager role with Amazon Diagnostics and then transitioned into a role as a solution architect with AWS, building solutions for healthcare and life sciences startups. “For me, the roles represent opportunities to learn and be curious,” Menis said, citing one of Amazon’s leadership principles.

He admitted he didn’t know much about the principles until his first job interview, but now he has come to appreciate them. He enjoys seeing how they relate to him and his past work.

“Working at Amazon has been a learning experience,” he says — yet another on the journey from lab volunteer to medical-breakthrough-creating scientist to whatever the next chapter will be.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production
US, WA, Seattle
We are seeking a talented applied researcher to join the Search team responsible for developing reinforcement learning systems for Amazon's shopping experience and delivering it to millions of customers. We believe that shopping on Amazon should be simple, delightful, and full of "wow" moments for everyone.
US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. Lead marketplace design and development based on economic theory and data analysis. Provide technical and scientific guidance to team members. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. Collaborate with business and software teams across Amazon Ads. Stay up to date with recent scientific publications relevant to the team. Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon’s large scale brings with it unique problems to solve in designing, testing, and deploying relevance models. We are seeking a strong applied Scientist to join the Experimentation Infrastructure and Methods team. This team’s charter is to innovate and evaluate ranking at Amazon Search. In practice, we aim to create infrastructure and metrics, enable new experimental methods, and do proof-of-concept experiments, that enable Search Relevance teams to introduce new features faster, reduce the cost of experimentation, and deliver faster against Search goals. Key job responsibilities You will build search ranking systems and evaluation framework that extend to Amazon scale -- thousands of product types, billions of queries, and hundreds of millions of customers spread around the world. As a Senior Applied Scientist you will find the next set of big improvements to ranking evaluation, get your hands dirty by building models to help understand complexities of customer behavior, and mentor junior engineers and scientists. In addition to typical topics in ranking, we are particularly interested in evaluation, feature selection, explainability. A day in the life Our primary focus is improving search ranking systems. On a day-to-day this means building ML models, analyzing data from your recent A/B tests, and guiding teams on best practices. You will also find yourself in meetings with business and tech leaders at Amazon communicating your next big initiative. About the team We are a team consisting of software engineers and applied scientists. Our interests and activities span machine learning for better ranking, experimentation, statistics for better decision making, and infrastructure to make it all happen efficiently at scale.