Sergey Menis is seen outside on a sunny day with a colorful landscape of mountains behind him, Sergey is standing to the left with his arms crossed, looking into the camera
Sergey Menis developed the nanoparticle platform that underpins a promising HIV vaccine candidate. The nanoparticle Menis designed snaps together with a protein, eOD-GT8, which is optimized to stimulate production of the rare antibodies that can eventually become bnAbs.
Courtesy of Sergey Menis

Amazon scientist Sergey Menis contributes to development of vaccine approach against HIV

"I hope we have accelerated HIV vaccine development by providing findings that we and others can build on."

About 16 years ago, Sergey Menis was volunteering at a protein design lab during the day and parking cars at night. He'd come to the Baker Lab in Seattle on a whim. While earning his master's degree in bioinformatics at Chalmers University of Technology in Sweden, he read a 2003 paper describing the lab's work designing a novel protein that didn't exist in nature.

"I was just in awe of that power," Menis recalled. He wanted to learn more about biochemist David Baker's work and emailed asking to join the lab, which is based at the University of Washington. Once there, he opted to work with Bill Schief, a postdoctoral researcher with Baker who was just starting his own lab. But Schief noticed Menis wasn't fully present in his work — he often seemed sleepy. What was going on?

Related content
Using social media data, the University of Maryland's Philip Resnik aims to help clinicians prioritize individuals who may need immediate attention.

Menis explained about the night job at the car park. He wanted to do more at the lab, but after all, he had to pay rent. Schief asked how much Menis needed to cover his expenses. Then he hired him.

That job was a turning point.

Schief and his team, along with Menis, developed a breakthrough approach to a vaccine for HIV. In February 2021, the nonprofit scientific research organizations IAVI and Scripps Research announced exciting results in a phase 1 clinical trial — called IAVI G001 — of the Schief lab's vaccine candidate. A phase I trial represents the first time a vaccine is tested in humans, one step in what is typically a four-phase process that determines its safety, efficacy, and proper dosage. In this case, the promising vaccine produced the desired immune response in 97% of participants.

HIV vaccine approach succeeds in first clinical trial

Earlier this year, building on those results, IAVI and Moderna announced that first doses had been administered in a new clinical trial of the experimental HIV vaccine. IAVI officials noted this portion of the phase 1 trial, called IAVI G002, will test the ability to prime and further mature the desired immune response using Moderna’s messenger RNA (mRNA) delivery platform used for their coronavirus vaccines. The mRNA platform enables rapid vaccine production that may dramatically accelerate the development timeline.

Guided by curiosity

Menis, who joined Amazon as a scientist in November 2020 and is now a solution architect with Amazon Web Services (AWS), hadn't set out to be a biomedical researcher, or even a scientist. "I never had a career in mind, in general," he said. "I would just follow whatever looked interesting."

As an undergrad at the University of Florida, that meant computer science. It wasn't until he had obtained his master's degree in software engineering and begun working at the defense and aerospace company Lockheed Martin that he started to rethink his career path.

Related content
Dr. Kristina Simonyan and her team created an AI-based deep learning platform that offers patients some peace of mind.

Writing software for government contract projects was fine, but it didn't feel hands-on enough. "I wanted to see more feedback and results, faster," Menis said.

He recalled a bioinformatics elective class that he'd taken while in grad school at the University of Central Florida. On another fateful impulse, he decided to look at bioinformatics grad programs; this time in Europe, as he was in search of a change of scenery. He got accepted to Chalmers University of Technology and, without knowing much about the university, headed to Sweden.

"Even though it's a well-known school in certain circles, I wasn't even sure it was a real school until I arrived there," he said, laughing. "But it turned out to be a fantastic school and a really intense program."

And when he read about David Baker's work in inventing a protein molecule from scratch, the next chapter of his career — computational protein design — began to unfold.

HIV: a formidable foe

Human immunodeficiency virus has infected more than 75 million people and killed more than 32 million since the epidemic began in early 1980s. With the isolation of the virus in the mid-1980s, it seemed that a vaccine was in the offing. But conventional approaches, which involve taking some inactivated part of the virus to stimulate an immune response, have not worked for HIV.

The virus has multiple wily strategies it employs to hide within the body. It cloaks itself with sugars that make it nearly invisible to the human immune system. And its surface is always changing, a series of disguises that fool most enemy antibodies. But researchers have identified a ray of hope buried within the immune system: the potential to make bnAbs, which can recognize and defeat 99% of HIV strains.

Sergey Menis is seen in a lab setting, wearing gloves while holding a device
Sergey Menis said when he read about David Baker's work in inventing a protein molecule from scratch, the next chapter of his career — computational protein design — began to unfold.
Courtesy of Sergey Menis

The problem is, people don't develop bnAbs until they're years into an infection. “That's too little, too late," Menis said. "By the time you've actually started developing the responses you need, you're already productively infected."

The strategy researchers are pursuing is to initiate the process of making these potent antibodies before infection occurs, giving the body a head start. To do so, they must identify the right "baby antibodies," as Menis calls them, and train them to be bnAbs.

Given that the human body has the ability to make an estimated 1 quintillion unique antibodies, finding and training the right ones is a needle-in-the-haystack endeavor. And only certain antibodies have the ability to become bnAbs—those baby antibodies are literally one in a million.

Only a small fraction of people with HIV develop the most potent bnAb response — the kind an effective vaccine would elicit — on their own. Researchers have been able to zero in on these antibodies by analyzing blood from HIV-positive donors. But there's good news, and the recent clinical trial confirmed it.

Related content
Politecnico di Milano professor Stefano Ceri is working to integrate genomic datasets into a single accessible system with the support of an Amazon Machine Learning Research Award.

"Nearly everyone in the world should have the cells needed to start the process of producing this immune response," Menis said. "To get that process started, we need to find them, stimulate them, and have them multiply."

Building a vaccine platform

After Menis began working at Baker Lab, he decided to pursue a PhD in biochemistry at the University of Washington in the Schief lab. Menis moved to San Diego midway through his PhD studies when Schief moved his lab to Scripps Research and IAVI.

"Sergey is very thoughtful and calm, with meticulous attention to detail. He is curious about how things work," said Schief, who is executive director of vaccine design for IAVI’s Neutralizing Antibody Center (NAC) at Scripps Research and a professor in the Department of Immunology and Microbiology at Scripps.

Schief advised Menis on his PhD thesis, during which Menis developed the nanoparticle platform that underpins the HIV vaccine candidate. The nanoparticle Menis designed snaps together with a protein, eOD-GT8, which is optimized to stimulate production of the rare antibodies that can eventually become bnAbs. The eOD-GT8 protein was developed primarily by another PhD student in the Schief lab, Joe Jardine. The nanoparticle amplifies the body's response by delivering multiple copies of eOD-GT8.

A computer image of the eOD-GT8 immune-stimulating protein.
A computer image of the eOD-GT8 immune-stimulating protein.
Courtesy of Sergey Menis

"It's spherical, like a virus, so the immune system treats it as if it might be a virus of some kind," Menis said. "We want to make it look like a little virus, even though it has no infectious properties whatsoever."

Menis served as the Schief lab's subject matter expert during the multi-year process of developing the vaccine candidate. "He played a big role in planning and carrying out the clinical trial," Schief said.

A team effort

Both Menis and Schief are careful to emphasize that there is much more to do before an approved HIV vaccine becomes reality. While the results from IAVI G001 are encouraging, there are significant milestones remaining.

"By demonstrating that this concept works in humans, and actually can work very well in terms of eliciting strong and consistent responses of the kind we wanted, I hope we have accelerated HIV vaccine development by providing findings that we and others can build on," Schief said.

Related content
Amazon Research Award recipient Jonathan Tamir is focusing on deriving better images faster.

Menis is also quick to credit the 48 volunteers who participated in the IAVI G001 clinical trial, noting that without such volunteers, a vaccine wouldn’t be possible. "They are the co-creators of this effort," he said. Schief and Menis also praised the work of many other individuals, particularly colleagues at Fred Hutch, George Washington University, and the NIH Vaccine Research Center.

The upcoming IAVI G002 will recruit 56 volunteers across four sites: GWU School of Medicine and Health, Hope Clinic of Emory Vaccine Center in Atlanta, Fred Hutchinson Cancer Research Center in Seattle, and the University of Texas–Health Science Center at San Antonio. The goal: replicate the priming of “baby antibodies” observed in IAVI G001 and teach them to take a step towards becoming a bnAb capable of neutralizing HIV.

An intriguing offer

Menis was working at IAVI and preparing to go on vacation when Amazon contacted him in 2020, asking whether he'd be interested in a position at the company. The hiring process happened quickly: He did an interview while on the trip, and on his first day back from vacation, he had an offer in his inbox.

"When Amazon reached out, I was really intrigued by the possibilities of what a giant like Amazon could be doing," Menis said. "I was open to discovering what that meant."

Related content
Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

After spending a little over a year as a research scientist, Menis moved into a senior product manager role with Amazon Diagnostics and then transitioned into a role as a solution architect with AWS, building solutions for healthcare and life sciences startups. “For me, the roles represent opportunities to learn and be curious,” Menis said, citing one of Amazon’s leadership principles.

He admitted he didn’t know much about the principles until his first job interview, but now he has come to appreciate them. He enjoys seeing how they relate to him and his past work.

“Working at Amazon has been a learning experience,” he says — yet another on the journey from lab volunteer to medical-breakthrough-creating scientist to whatever the next chapter will be.

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.