Dr. Kristina Simonyan
“For patients it's just really scary,” says Dr. Kristina Simonyan, a neuroscientist and the head of the Dystonia and Speech Motor Control Laboratory at Massachusetts Eye and Ear and Harvard Medical School. “It’s one thing if you know what your issue is—but not to know is very difficult in any health diagnosis.”
Credit: Anna Olivella

Amazon Research Award recipient develops new tool to diagnose dystonia

Dr. Kristina Simonyan and her team created an AI-based deep learning platform that offers patients some peace of mind.

Imagine waiting five years to get a diagnosis. That is the reality facing those who may be battling dystonia, a potentially debilitating neurological condition that requires a painstaking process to identify. Dystonia is characterized by involuntary muscle movements that can manifest throughout the body, but usually show up in one area. Commonly, eyelid muscles, neck muscles, hands, or vocal cords are affected—all of which can seriously interfere with people’s lives. For example, laryngeal dystonia, which impacts the voice, can make speech difficult or impossible.

Symptoms often first appear in midlife, when patients are hitting career highs and family pressures mount. “For patients it’s just really scary,” says Dr. Kristina Simonyan, a neuroscientist and the head of the Dystonia and Speech Motor Control Laboratory at Massachusetts Eye and Ear and Harvard Medical School. “It’s one thing if you know what your issue is—but not to know is very difficult in any health diagnosis.”

The long and difficult diagnosis time, which takes an average of five-and-a-half years for a typical patient, is exactly why her laboratory spent the last decade-plus developing DystoniaNet, a new AI-based deep learning platform that can perform the task in a fraction of a second.

Dystonia is considered a rare disorder; it affects about 300,000 people in the United States. It’s also often undiagnosed or misdiagnosed, so the actual numbers may be higher. Why is it so tough to know if someone has it? There’s no biomarker or gold-standard diagnostic test for dystonia, so doctors have to go through a process of elimination to determine whether the symptoms suggest dystonia or another neurological issue, like Parkinson’s. Even that process isn’t straightforward: “The clinical criteria are vague, and they’re not standardized. They depend on the clinician’s experience and expertise,” Simonyan says.

Symptoms also vary between patients—and even within the same patient—and can fluctuate over time. “If [a patient] sees the clinician in the morning and then sees another clinician that afternoon, there could be a discrepancy in opinions, because symptoms also change at different times of the day and different days within the week,” says Simonyan.

Those challenges are exactly why a dystonia diagnostic test is so important to develop.

Simonyan’s work on dystonia began in 2004, when she was a postdoctoral researcher with the National Institutes of Health. Her interest in laryngology, which began in medical school when she became fascinated by hearing and voice production, led her to focus on neural control of voice production and then laryngeal dystonia—but she was starting from scratch.

“There was really nothing known,” Simonyan says. “At that time, there weren’t any neuroimaging studies done to see where the abnormalities are, what is normal or abnormal, or how voice and speech are processed and output by the brain in these patients.”

She published paper after paper on research aimed at figuring out the functional and structural abnormalities in the brains of patients with laryngeal dystonia, as well as the connectivity between brain regions and speech production. “For many, many years, we were trying to understand the pathophysiology of this disorder in order to identify better diagnostic and better treatment options,” says Simonyan.

Four years ago, all that work started to pay off.

For patients with dystonia, an MRI usually doesn't show an abnormality specific to the disease, says Simonyan. But over time, radiological images acquired for research studies consistently picked up hallmarks of dystonia within the brain—microstructural changes that a clinical MRI wouldn’t show. “We capitalized on that,” she says. 

In 2016, Simonyan and her research team published their first paper using machine learning linear discriminant analysis (LDA). LDA is a method used to classify a set of data into distinct groups—in this case the structural and functional MRI neuroimaging of different phenotypes and genotypes of dystonia. Once those markers were identified and categorized from a large number of patients, they were fed into a machine learning algorithm.

The goal, Simonyan says, was to see whether images from patients already diagnosed with dystonia could be used to classify undiagnosed patients who might have the disease. It worked, with a success rate of 81% correct diagnoses. That’s better than the current rate among physicians (about 34%), but still not good enough to move to clinical setting—and it meant doctors treating patients needed to learn how to do time-consuming image analysis and other tasks to run the program.

Time in the clinic is limited and the busy doctors there have other priorities. Simonyan wanted an even better test. “That was my motivation to turn this research to deep learning,” she says. Her team set out to build a tool that automated everything—not only the machine learning analysis of data, but the data input and processing as well.

Together with her postdoctoral fellow, she did just that over the past two years, increasing the level of automation in several iterations. “With the support of Amazon Web Services, we were fortunate to have access to superb computational resources and combine them with our large data set of patients. The final product was DystoniaNet,” she says.

And while the data were centered on laryngeal dystonia, the test also works to diagnose other forms of dystonia that affect the neck muscles (cervical dystonia) or eyelid muscles (blepharospasm). It has a correct diagnosis rate of 98.8%, and best of all, it doesn’t take years or months: Simonyan’s test takes just .36 seconds.

Simonyan hopes that DystoniaNet will move to clinical practice (expanded testing is underway) and says clinicians and researchers have been very excited at her presentations.

In the meantime, her team continues to refine DystoniaNet. A new capability would incorporate the ability to rule out dystonia and pinpoint other neurological disorders, such as Parkinson’s and essential tremor, making it useful to many more physicians—and patients.

DystoniaNet doesn’t exclude the physician from the process of diagnosis, Simonyan says: “It just helps them and provides an objective diagnostic tool that they have been lacking all this time.”

Our goal is to support researchers, such as Dr. Simonyan and her team, with infrastructure and tools to accelerate their work through the Amazon Research Awards program.
Taha A. Kass-Hout, MD, MS, director of machine learning, at Amazon Web Services

She says Amazon's ARA funding for her work on DystoniaNet was critical. Her team was able to hire additional help and it gave them access to the cloud, where they could speed up the process of training and testing the model.

“That really made a difference for us to move forward, especially with the very large number of subjects,” she says.

Computing power made a difference too: The computational framework Simonyan’s team used was implemented on an AWS Deep Learning Amazon Machine Image (AMI), and run on the Amazon Web Services EC2 P2, which Simonyan says wasn’t matched by even the very powerful workstations in her lab. That expanded the computational ability to test, train, and refine different iterations of the model. Without that capability, she says, “our time in this process would have been much, much longer—we probably would have been still testing it,” she says.

Her team’s ability to harness the potential of AWS also factored into the decision to fund her grant.

“Our goal is to support researchers, such as Dr. Simonyan and her team, with infrastructure and tools to accelerate their work through the Amazon Research Awards program,” says Taha A. Kass-Hout, MD, MS, director of machine learning, at Amazon Web Services. “We are thrilled to hear that AWS machine learning tools were able to speed up their groundbreaking research and development of DystoniaNet.”

Even with Simonyan’s work, hurdles remain for dystonia patients. The cause is unknown, there is no cure, and available treatments are minimal. All patients can do is work with their doctor to manage their symptoms. But knowing exactly what disease they have, and that it’s not fatal even though it affects their quality of life, can reduce some of the fear and uncertainty for those who suffer from it.

“They go through this period of time where they don’t know if they're dying or not, or what's wrong with them,” says Simonyan. “So all of them are relieved when they get the diagnosis.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.