Amazon postdoctoral scientists apply operations research to real-world problems

Chamsi Hssaine and Hanzhang Qin, the inaugural postdoctoral scientists with the Supply Chain Optimization Technologies team, share what they learned from Amazon scientists.

When customers are shopping on the Amazon Store and learn that a product is out of stock, how likely are they to replace it with a similar product from a different brand? What are the fastest, most fuel-efficient routes to deliver orders to customers?

If we claim to be working on real-world problems, it’s important to actually go out there and work on these problems, to ground research in reality.
Chamsi Hssaine

These are among the questions that Chamsi Hssaine and Hanzhang Qin, the inaugural postdoctoral scientists with the Amazon Supply Chain Optimization Technologies (SCOT) team, explored when they entered the Amazon Postdoctoral Science Program in 2022. The program provides PhD graduates with an opportunity to gain industry experience, apply their subject matter expertise, and learn from Amazon scientists.

“If we claim to be working on real-world problems, it’s important to actually go out there and work on these problems, to ground research in reality,” said Hssaine, who received a PhD in operations research at Cornell University and recently joined the Data Sciences and Operations Department at the University of Southern California’s Marshall School of Business as an assistant professor.

Operations research at Amazon
How Amazon’s Supply Chain Optimization Technologies team has evolved over time to meet a challenge of staggering complexity.

Qin received a PhD in computational science and engineering from the Massachusetts Institute of Technology and will be an assistant professor at the National University of Singapore’s Department of Industrial Systems Engineering and Management this fall. He said the postdoctoral science program at Amazon opened his eyes to the landscape of real-world supply chain problems yet to be solved.

“You cannot get a real sense of these problems if you only read papers and articles talking about them,” he said. “When I got into this business and could see the datasets describing these problems, I realized that there are still many very important problems in supply chain management and transportation.”

Fostering collaboration with postdocs at Amazon

The Amazon Postdoctoral Science Program is a natural evolution of the company’s efforts to engage with the academic community to facilitate an exchange of ideas between academia and Amazon “without causing a brain drain from universities,” explained Salal Humair, a vice president and distinguished scientist in SCOT who was Qin's manager.

Related content
How Amazon is shaping a set of initiatives to enable academia-based talent to harmonize their passions, life stations, and career ambitions.

This engagement started with the Amazon Scholars program, which allows tenured and high-profile academics to join Amazon in a flexible capacity such as a part-time arrangement. The program expanded to Amazon Visiting Academics for pre-tenured or early-tenure academics who seek to apply research methods to complex technical challenges while continuing their university work. The Postdoctoral Science Program engages early-career academics.

“Having top young talent spend a year at Amazon before embarking on their academic careers is a great way of building relationships with the next generation of academic leaders,” said Garrett van Ryzin, a distinguished scientist on the SCOT team who was Hssaine’s manager. “These are early days,” he added, “but I have confidence that it’s going to be very valuable.”

Operations research and optimization

The field of operations and optimization research was unknown to both Hssaine, who grew up in Los Angeles, and Qin, who grew up in China, until they entered university. But both loved numbers and gravitated toward math and computer science courses in college. There, they both discovered operations research aligned with their individual interests.

Chamsi Hssaine outside.jpg
Chamsi Hssaine recently joined the Data Sciences and Operations Department at the University of Southern California’s Marshall School of Business as an assistant professor.

“It was the first time that I realized you could set up really elegant mathematical models to solve real-world problems,” said Hssaine, who learned about the field during an introductory engineering course while an undergrad at Princeton University. “That really spoke to me.”

She majored in operations research and financial engineering at Princeton and attended graduate school at Cornell University. Her thesis focused “on algorithm and incentive design for smart societal systems,” she said. “In particular, my research incorporates more-realistic models of behavior under incentives and seeks to understand the effects of policy decisions.”

For example, one project explored the intersection between how customers decide where to buy certain products and how companies price those products.

“There’s a wide variety of ways in which customers make decisions between company A and company B. My work tries to understand how various assumptions on customer behavior impact this sort of pricing decision in a competitive landscape,” she said.

Hanzhang Qin outside.jpg
Hanzhang Qin will be an assistant professor in the National University of Singapore’s Department of Industrial Systems Engineering and Management this fall.

Qin majored in mathematics and industrial engineering at Tsinghua University in Beijing. As part of those studies, he was exposed to operations research and maintained a focus on it while at MIT, where he received a master’s in electrical engineering and computer science and a second master’s in transportation.

He then pursued a PhD in computational science and engineering with a primary focus on areas of operations research that use statistics and probability to navigate uncertainty.

For example, one area of his research at MIT focused on developing a joint pricing and inventory control system for times when demand is uncertain. Another interest was in developing routes for delivery vehicles before the demand is known.

“When planning routes in advance, some of the routes of some drivers are intentionally overlapped so that they can help each other and coordinate on these overlap routes,” Qin said. He studied the value of this overlapping in routes, finding “a very little amount of overlap can significantly enhance the performance of the system.” 

Postdoctoral science

As they wrapped up their PhD research, both Hssaine and Qin secured tenure-track positions in academia. Yet both elected to postpone their appointments for a year to gain industry experience.

“Amazon in particular seemed like a natural fit for my research because of the opportunity to apply my methodological toolbox to SCOT’s rich problem space,” Hssaine said. “And Amazon had been on my radar because I did an internship at Amazon during my third year of PhD.”

Hssaine’s main project is on inbound optimization — coordinating where vendors and sellers send their products into the Amazon network. This involved building models that explore, among other details, the tradeoffs between metrics such as the closest warehouse to the seller or vendor and the levels of congestion at those warehouses.

Related content
The pandemic turbo-charged retail growth — teams of scientists at Amazon forged a path forward to handle the scale.

For example, if the warehouse closest to the vendor is congested, the congestion could cause delays getting the product to a customer. Sending a shipment to a congested warehouse will also have knock-on effects for other products and customers.

“When you’re thinking about where to send a shipment, you’re not just thinking about the cost that it itself incurs but the cost that it’s imposing on the rest of the system,” Hssaine said.

This research required finding data that is often hidden from plain sight, noted van Ryzin. For example, there is not a long queue of trucks at warehouses that signals congestion. Rather, sellers schedule delivery appointments, and congestion means the next available appointment may be the following week. It shows up as appointment delay.

“She had to do a lot of digging around to figure out whether the queue was really there, where it was manifesting, and do we even have visibility on how bad these appointment delays are getting,” van Ryzin said.

Qin’s research at Amazon, under Humair, took two tracks. One explored ways to improve the algorithms used to sell excess inventory through multiple channels such as markdowns on the Amazon Store and targeted advertising on other websites.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

“This is a relatively unmodeled area within operations research,” noted Humair. “There are multiple ways we can make the products more attractive.”

In a second project, Qin applied his PhD research in planning efficient ways to procure, store and route inventory to customers. The preliminary research specifically focused on modelling tradeoffs between carbon emissions, inventory levels at fulfillment centers, and delivery routes and may eventually inform the company’s progress toward its Climate Pledge goal.

Qin presented his delivery route planning research at the SIAM Conference on Optimization in Seattle this spring. Hssaine presented her work on inbound optimization at the same conference. 

Back to academia

As Hssaine and Qin enter the next phase of their careers in academia, they’ll build on the research conducted over the past year at Amazon, taking into account what they have learned about the types of questions that decision makers need answered.

“As academics, we can be quite divorced from that,” Hssaine said. “Even though what I’ve worked on at Amazon is related to the kinds of things that I was thinking about at Cornell, it’s allowed me to see a much broader range of problems.”

Academics at Amazon
The Johns Hopkins business school professor and Amazon Scholar focuses on enhancing customer experiences.

Qin, who has worked with several companies throughout his academic career, will take with him a newfound appreciation for Amazon’s “bias for action” leadership principle valuing speed in business.

“It’s much more efficient,” he said of doing research at Amazon. “This experience has helped me get comfortable with the faster pace of work.”

Humair and van Ryzin anticipate the exchange of ideas with their first class of Amazon postdoctoral scientists will continue as they start their careers in academia. Both Qin and Hssaine, for example, are working on research papers with colleagues from Amazon.

More broadly, Humair believes the fellowship experience will help Qin and Hssaine focus their academic research on topics that have real-world impact.

“As academics, you have a great deal of flexibility on what you choose to work on,” he said. “What I hope they take away is the judgment on what are truly important problems to work on.”

Related content

GB, Cambridge
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to advance the state-of-the-art in developing efficient multimodal language models across our product portfolio. Through close hardware-software integration, we design and train models for resource efficiency across the hardware and software tech stack. The Silicon and Solutions Group Edge AI team is looking for a talented Sr. Applied Scientist who will lead our efforts on inventing evaluation methods for multimodal language models and agents for new devices, including audio and vision experiences. Key job responsibilities - Collaborate with cross-functional engineers and scientists to advance the state of the art in multimodal model evaluations for devices, including audio, images, and videos - Invent and validate reliability for novel automated evaluation methods for perception tasks, such as fine-tuned LLM-as-judge - Develop and extend our evaluation framework(s) to support expanding capabilities for multimodal language models - Analyze large offline and online datasets to understand model gaps, develop methods to interpret model failures, and collaborate with training teams to enhance model capabilities for product use cases - Work closely with scientists, compiler engineers, data collection, and product teams to advance evaluation methods - Mentor less experienced Applied Scientists A day in the life As a Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to innovative methods for evaluating new product experiences and discover ways to enhance our model capabilities and enrich our customer experiences. You'll research new methods for reliably assessing perception capabilities for audio-visual tasks in multimodal language models, design and implement new metrics, and develop our evaluation framework. You'll collaborate across teams of engineers and scientists to identify and root cause issues in models and their system integration to continuously enhance the end-to-end experience. About the team Our Edge AI science team brings together our unique skills and experiences to deliver state-of-the-art multimodal AI models that enable new experiences on Amazon devices. We work at the intersection of hardware, software, and science to build models designed for our custom silicon.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps Stay up-to-date with advancements and the latest modeling techniques in the field Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team SPB Ad Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Applied Scientist with machine learning engineering background who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine learning systems. We are looking for a talented Applied Scientist with a strong background in machine learning engineering to join our team and help us grow the business. In this role, you will partner with a team of engineers and scientists to build advanced machine learning models and infrastructure, from training to inference, including emerging LLM-based systems, that deliver highly relevant ads to shoppers across all Amazon platforms and surfaces worldwide. Key job responsibilities As an Applied Scientist, you will: * Develop scalable and effective machine learning models and optimization strategies to solve business problems. * Conduct research on new machine learning modeling to optimize all aspects of Sponsored Products business. * Enhance the scalability, automation, and efficiency of large-scale training and real-time inference systems. * Pioneer the development of LLM inference infrastructure to support next-generation GenAI workloads at Amazon Ads scale.
US, WA, Seattle
The Economics Science team in the Amazon Manager Experience (AMX) organization builds science models supporting employee career-related experiences such as their evaluation, learning and development, onboarding, and promotion. Additionally, the team conducts experiments for a wide range of employee and talent-related product features, and measures the impact of product and program initiatives in enhancing our employees' career experiences at Amazon. The team is looking for an Economist who specializes in the field of macroeconomics and time series forecasting. This role combines traditional macroeconomic analysis with modern data science techniques to enhance understanding and forecasting of workforce dynamics at scale. Key job responsibilities The economists within ALX focus on enhancing causal evaluation, measurement, and experimentation tasks to ensure various science integrations and interventions achieve their goals in building more rewarding careers for our employees. The economists develop and implement complex randomization designs that address the nuances of experimentation in complex settings where multiple populations interact. Additionally, they engage in building a range of econometric models that surface various proactive and reactive inspection signals, aiming toward better alignment in the implementation of talent processes. The economists closely collaborate with scientists from diverse backgrounds, as well as program and product leaders, to implement and assess science solutions in our products.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As a Data Scientist, you will • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder • Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. The Applied Scientist will be in a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in Natural Language Processing (NLP) or Computer Vision (CV) related tasks. They will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. They will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Their work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve solutions powering customer experience on Alexa+. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, CA, Mountain View
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.