Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in artificial intelligence and related fields.
93 results found
  • US, WA, Seattle
    Job ID: 2920605
    (Updated 16 days ago)
    The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
  • US, WA, Seattle
    Job ID: 2922074
    (Updated 0 days ago)
    The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
  • US, WA, Seattle
    Job ID: 2922542
    (Updated 16 days ago)
    The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
  • US, WA, Seattle
    Job ID: 2913692
    (Updated 41 days ago)
    Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in ML modeling and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As a Sr. Applied Scientist in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal, RL). - Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in MLOps. - Design and lead roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
  • (Updated 15 days ago)
    Our team leads the development and optimization of on-device ML models for Amazon's hardware products, including audio, vision, and multi-modal AI features. We work at the critical intersection of ML innovation and silicon design, ensuring AI capabilities can run efficiently on resource-constrained devices. Currently, we enable production ML models across multiple device families, including Echo, Ring/Blink, and other consumer devices. Our work directly impacts Amazon's customer experiences in consumer AI device market. The solutions we develop determine which AI features can be offered on-device versus requiring cloud connectivity, ultimately shaping product capabilities and customer experience across Amazon's hardware portfolio. This is a unique opportunity to shape the future of AI in consumer devices at unprecedented scale. You'll be at the forefront of developing industry-first model architectures and compression techniques that will power AI features across millions of Amazon devices worldwide. Your innovations will directly enable new AI features that enhance how customers interact with Amazon products every day. Come join our team! Key job responsibilities As a Principal Applied Scientist, you will: • Own the technical architecture and optimization strategy for ML models deployed across Amazon's device ecosystem, from existing to yet-to-be-shipped products. • Develop novel model architectures optimized for our custom silicon, establishing new methodologies for model compression and quantization. • Create an evaluation framework for model efficiency and implement multimodal optimization techniques that work across vision, language, and audio tasks. • Define technical standards for model deployment and drive research initiatives in model efficiency to guide future silicon designs. • Spend the majority of your time doing deep technical work - developing novel ML architectures, writing critical optimization code, and creating proof-of-concept implementations that demonstrate breakthrough efficiency gains. • Influence architecture decisions impacting future silicon generations, establish standards for model optimization, and mentor others in advanced ML techniques.
  • (Updated 36 days ago)
    The Advertising Incrementality Measurement (AIM) team is looking for an Applied Scientist II with experience in causal inference, experimentation, and ML development to help us expand our causal modeling solutions for understanding advertising effectiveness. Our work is foundational to providing customer-facing experimentation tools, furthering internal research & development, and building out Amazon's new Multi-Touch Attribution (MTA) measurement offerings. Incrementality measurement is a lynchpin for the next generation of Amazon Advertising measurement solutions and this role will play a key role in the release and expansion of these offerings. Key job responsibilities * Partner with economists and senior team members to drive science improvements and implement technical solutions at the state-of-the-art of machine learning and econometrics * Partner with engineering and other science collaborators to design, implement, prototype, deploy, and maintain large-scale causal ML models. * Carry out in-depth research and analysis exploring advertising-related data sets, including large sets of real-world experimental data, to understand advertiser behavior, highlight model improvement opportunities, and understand shortcomings and limitations. * Define data quality standards for understanding typical behavior, capturing outliers, and detecting model performance issues. * Work with product stakeholders to help improve our ability to provide quality measurement of advertising effectiveness for our customers. About the team AIM is a cross disciplinary team of engineers, product managers, economists, data scientists, and applied scientists with a charter to build scientifically-rigorous causal inference methodologies at scale. Our job is to help customers cut through the noise of the modern advertising landscape and understand what actions, behaviors, and strategies actually have a real, measurable impact on key outcomes. The data we produce becomes the effective ground truth for advertisers and partners making decisions affecting $10s to $100s of millions in advertising spend.
  • (Updated 12 days ago)
    The Measurement, Ad Tech, and Data Science (MADS) team at Amazon Ads is at the forefront of developing cutting-edge solutions that help our tens of millions of advertisers understand the value of their ad spend while prioritizing customer privacy and measurement quality. We develop cutting-edge deterministic algorithms, machine learning models, causal models, and statistical approaches to empower advertisers with insights on the effectiveness of their ads in guiding customers from awareness to purchases. Our insights help advertisers build full-funnel advertising strategies. We maximize the information we extract from incomplete traffic signals and alternative sources to capture the impact of their ad spending for both Amazon recognized and anonymous traffic. Our vision is to lead the industry in extracting and combining information from several sources to enable advertisers to optimize their return on their ad spend. As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities * Lead the development of ad measurement models and solutions that address the full spectrum of an advertiser's investment, focusing on scalable and efficient methodologies. * Collaborate closely with cross-functional teams including engineering, product management, and business teams to define and implement measurement solutions. * Use state-of-the-art scientific technologies including Generative AI, Classical Machine Learning, Causal Inference, Natural Language Processing, and Computer Vision to develop cutting-edge models that measure the impact of ad spend across multiple platforms and timescales. * Drive experimentation and the continuous improvement of ML models through iterative development, testing, and optimization. * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Foster collaborations between scientists to move faster, with broader impact. * Regularly engage with the broader scientific community with presentations, publications, and patents. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate business insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the advertising organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Team video https://advertising.amazon.com/help/G4LNN5YWHP6SM9TJ
  • US, CA, San Diego
    Job ID: 2908547
    (Updated 14 days ago)
    Are you passionate about automation, optimization, knowledge extraction, and artificial intelligence through the use of Machine Learning, Computer Vision, Optimization, Natural Language Processing, and Recommender systems? We have a team of experienced scientists with a critical business mission making revolutionary leaps forward in these spaces. On this team you will work with large multimodal datasets to build generative and discriminative models for optimizing large-scale manufacturing and fulfillment processes, analyze and model customer reading behavior to measure engagement and detect risks, and build AI-based systems for helping indie authors make their businesses successful. This will involve combining methods from several science domains with domain knowledge across multiple businesses into sophisticated ML workflows. Our team has mature areas and green-field opportunities. We offer scientific autonomy, value end-to-end ownership, and have a strong customer-focused culture. As a Research Scientist at Amazon, you will connect with world leaders in your field working on similar problems. You will be working with large distributed systems of data and providing technical leadership to the product managers, teams, and organizations building machine learning solutions. You will be tackling Machine Learning challenges in Supervised, Unsupervised, and Semi-supervised Learning; utilizing modern methods such as deep learning and classical methods from statistical learning theory, detection, estimation. Research Scientists are specialists with the deep expertise to drive the scientific vision for our products. They are externally aware of the state-of-the-art in their respective field of expertise and are constantly focused on advancing that state-of-the-art for improving Amazon’s products and services. Come join us as we revolutionize the book industry and deliver an amazing experience to our Kindle authors and readers. Key job responsibilities Great candidates for this position will be experts in the areas of data science, machine learning, computer vision, optimization, NLP, or statistics. You will have hands-on experience with multiple science initiatives as well as be able to balance technical leadership with strong business judgment to make the right decisions about technology, models and methodological choices. You will strive for simplicity, and demonstrate significant creativity and high judgment. About the team Kindle Direct Publishing (KDP) and Print On Demand (POD) have empowered a new wave of self-motivated creators, tearing down barriers that once blocked writers from reaching readers. Our team builds rich applications and systems that empower anyone to realize their dream of becoming a published author. We strive to provide an experience that is powerful, yet simple to use and accessible to all. We focus on building systems that enable authors to design high quality digital and print books, reaching readers all around the world. This role will help ensure we maintain the trust of both our Authors and Readers by ensuring all books published to Amazon meet our standards.
  • (Updated 26 days ago)
    The Measurement, Ad Tech, and Data Science (MADS) team at Amazon Ads is at the forefront of developing cutting-edge solutions that help our tens of millions of advertisers understand the value of their ad spend while prioritizing customer privacy and measurement quality. We develop cutting-edge deterministic algorithms, machine learning models, causal models, and statistical approaches to empower advertisers with insights on the effectiveness of their ads in guiding customers from awareness to purchases. Our insights help advertisers build full-funnel advertising strategies. We maximize the information we extract from incomplete traffic signals and alternative sources to capture the impact of their ad spending for both Amazon recognized and anonymous traffic. Our vision is to lead the industry in extracting and combining information from several sources to enable advertisers to optimize their return on their ad spend. As a Senior Applied Scientist on the team, you will be at the fore-front of innovation, developing measurement solutions end-to-end from inception to production. You will set the technical vision and innovate on behalf of our customers. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. You will partner with engineering to deploy these solutions into production. You will work with key stakeholders from various business teams to enable advertisers to act upon those metrics. Key job responsibilities * Lead the development of ad measurement models and solutions that address the full spectrum of an advertiser's investment, focusing on scalable and efficient methodologies. * Collaborate closely with cross-functional teams including engineering, product management, and business teams to define and implement measurement solutions. * Use state-of-the-art scientific technologies including Generative AI, Classical Machine Learning, Causal Inference, Natural Language Processing, and Computer Vision to develop cutting-edge models that measure the impact of ad spend across multiple platforms and timescales. * Drive experimentation and the continuous improvement of ML models through iterative development, testing, and optimization. * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Foster collaborations between scientists to move faster, with broader impact. * Regularly engage with the broader scientific community with presentations, publications, and patents. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate business insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the advertising organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Team video https://advertising.amazon.com/help/G4LNN5YWHP6SM9TJ
  • US, CA, Sunnyvale
    Job ID: 2919796
    (Updated 43 days ago)
    As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.