Alex-Bayen.jpg
Alexandre Bayen is the Liao-Cho Professor of Engineering at the University of California Berkeley and director of its Institute of Transportation Studies. Bayen plays leading roles in multiple transportation projects.
Courtesy of Alexandre Bayen

Alexandre Bayen is a driving force behind mixed-autonomy traffic

Coordinated automation could improve traffic flow, boost efficiency, and slash emissions. A combination of machine learning, big data, and Amazon Web Services is making this future possible.

The smooth-flowing traffic of the future is just around the corner. Advances in vehicle automation are converging with developments in machine learning (ML) and cloud computing to create self-driving vehicles that not only control themselves safely, but also have an oversized beneficial effect on the journeys of all the regular drivers on the road around them. Welcome to “mixed autonomy traffic”.

Leading the pack into this future is Alexandre Bayen, the Liao-Cho Professor of Engineering at the University of California Berkeley and director of its Institute of Transportation Studies. An expert in control and optimization, Bayen is playing leading roles in multiple transportation projects, ranging from cutting-edge, open-source traffic simulation and optimization, to large scale freeway observation that involves putting automated vehicles into real traffic to explore the impact of ML-derived self-driving behaviors. These automated vehicles also have human supervisors at the wheel, ready to take over the vehicle at any time if needed.

Before delving into Bayen’s work, an example of the promise of mixed autonomy traffic is in order.

Traffic jam experiment
This video is from a 2008 experiment in which people are attempting to maintain the same speed while driving single-file around a circular track.

Anyone regularly caught in “phantom” traffic jams, which have no obvious cause, knows how annoying they are. It is simply the nature of human drivers to create these so-called “stop-and-go waves” — we just can’t help jamming up then spreading out on the road, as illustrated by a brief video (above) of a classic 2008 experiment in which people are attempting to maintain the same speed while driving single-file around a circular track.

Fast forward to 2017, to a series of similar experiments led by Bayen’s collaborators, Jonathan Sprinkle of the University of Arizona and Daniel Work of Vanderbilt University. This work echoed the 2008 experiment, but with an enormous difference: of the 20 or so cars on a circular track, one of them could switch into self-driving mode. When it did, the effect on the stop-and-go waves was immediate — and remarkable.

Self-driving cars experiment demonstrates dramatic improvements in traffic flow

Simply through the slowing or accelerating of this single car, in accordance with its traffic-optimization algorithms, the traffic waves dissipated significantly. In one test, fuel consumption of the cars in the ring was reduced by more than 40% and excessive braking events dropped from 8.5 per vehicle-kilometer to near zero.

The experimenters concluded that traffic flow control would be possible in real-life traffic with less than 5% of cars being automated.

A self-driving future

With that in mind, what will happen to our existing traffic flow when increasing numbers of vehicles are self-driving? This is the future being shaped by Bayen and his group. At the center of his work is an open-source framework called FLOW. With deep reinforcement learning at its heart, FLOW is an optimization and microsimulation tool for traffic flow. Don’t be fooled by “micro” in this context — the simulation features hundreds of thousands of vehicles on complex road systems. FLOW allows the virtual exploration of complex traffic optimization challenges on a wide variety of road set-ups.

“Traffic simulation engines have become really good, very accurate, in the last decade. And the computation required has become really tractable, mostly because of scalable cloud computing offered by Amazon Web Services and others,” says Bayen.

Deep reinforcement learning is particularly suited to developing mixed-autonomy traffic optimization because it enables simulated self-driving vehicles to try out different driving behaviors. If a set of driving policies results in lower fuel use without compromising journey time, for example, the algorithm is rewarded. “Ten years ago it was really hard to compute the outcome of experiments in simulation — and very costly. You could do a couple of intersections, and maybe a couple hundred vehicles,” says Bayen. “With the plethora of data available now, combined with the ability to do these computations very fast, it has become really quick to compute the rewards and to iterate until you get something that works very well.”

Achieving a FLOW state

Bayen is keen to clarify the primary goal of FLOW. “It’s important to differentiate between boosting energy efficiency and reducing congestion. We are not attempting to fix congestion — that is not our goal, and these would not be the right tools. We are improving the energy efficiency of traffic, which is a very different problem.”

We are not attempting to fix congestion — that is not our goal, and these would not be the right tools. We are improving the energy efficiency of traffic, which is a very different problem.
Alexandre Bayen

Indeed, in simulations, FLOW’s algorithms have a minimal effect on travel time — but a dramatic effect on the driving experience, Bayen explains. “The amount of braking is significantly reduced and the amount of acceleration — where most of the energy is burned and pollutants emitted — has been significantly reduced as well. That's the main challenge.”

In 2019, Bayen received an Amazon ML Research Award to support the development of "Applications of Deep-RL for Training Connected, Autonomous Vehicles in Mixed Environments". But even before the award, FLOW was intrinsically linked to Amazon Web Services (AWS), Bayen explains. “When we started FLOW in 2018, there were only three tools widely used for microsimulation of traffic: SUMO, Aimsun, and PTV Vissim. SUMO was an open-source platform already running on AWS, but Aimsun — now owned by Siemens Mobility — built the first instantiation of their software on the AWS cloud specifically for us,” says Bayen. “The FLOW Project was the first time anyone managed to put these three big components together: the machine learning, the cloud computing, and the simulation engine. It was historic.”

A key reason this combination is important, Sprinkle says, is big data: “For societal-scale systems to take advantage of ML, they need to take advantage of these gigantic datasets. Hosting the ML algorithms on AWS — in the same place the data are — speeds up discovery.”

The success of FLOW generated a lot of interest in Bayen’s group, including from the US government, which subsequently decided to fund the research. That is when Bayen and a broad collaboration, called the CIRCLES Consortium, was formed, with Bayen, Work, and Sprinkle among the co-principal investigators. They started working with Toyota, GM, and Nissan, to develop a proof-of-concept to demonstrate that mixed-autonomy traffic control actually works on the road. “That is what we are doing now, with the generous funding of the US Department of Energy,” says Bayen.

Part of this effort is a project called I-24 Mobility Technology Interstate Observation Network (I-24 MOTION). The CIRCLES Consortium is installing video monitoring infrastructure along six miles of I-24 in Tennessee, to gather extensive, top-quality traffic data. When completed in 2022, it will consist of 400 pole-mounted, 4k-resolution cameras. “The network is already gathering an astronomical amount of data — on the order of petabytes,” says Bayen. “It will not only provide the Tennessee Department of Transportation with a lot more operational capabilities for freeway operations, but also provide the research community with an unprecedented data set that has the potential to unveil a lot of interesting traffic features.”

Real life traffic testing

This is where the rubber hits the road. This year, the CIRCLES Consortium is deploying self-driving vehicles on that same stretch of I-24, to see how ML-derived self-driving algorithms might positively impact real-world traffic. “We’re hoping that by driving a few cars differently, it will reduce energy use for the entire stream of traffic,” says Sprinkle.

Heavy morning traffic on Highway 101 going through Silicon Valley, South San Francisco Bay Area
Alexandre Bayen says going from simulations to real-world deployment is significant. “If something runs really well in simulation, one still needs to be certain that it will transfer well to hardware and run well with real cars on real roads using imperfect data."
Sundry Photography/Getty Images

“This summer, we're doing 14 vehicles — four with automation and 10 as monitoring vehicles gathering local measurements,” says Bayen. Next year, another live deployment is planned, but with a dramatic increase in the number of automated and monitoring vehicles. 

This step from simulation to real-world deployment is more like a giant leap. “If something runs really well in simulation, one still needs to be certain that it will transfer well to hardware and run well with real cars on real roads using imperfect data. That's a big challenge,” says Bayen.

To that end, since 2016, the US National Science Foundation has funded efforts to develop the software framework that enables FLOW to be deployed on a variety of real vehicles and many different hardware platforms. The real-world deployment is a cautious, painstaking process. “We have facilities at Berkeley and Vanderbilt for low speed, and later high-speed testing, that enables us to work through the sequence of steps,” Bayen notes. “Now we’ve done this on private roads, open roads, and have progressed to freeway traffic.”  

Another challenge for this field is predicting how cars might transmit their locations in the future. There are also ongoing debates around how driver movement data will or should be collected, protected, transmitted, and shared, says Bayen. “Our job is to work on the different architectures that can support these many potential paradigms. These include fully ‘decentralized’ vehicles that do not need to talk to each other or to a central authority to improve overall traffic flow, or fully centralized, in which everybody talks to everybody. Or partially coordinated, in which cars only talk to their neighboring cars, and so on. While we wait for a public policy on this, we are developing an entire portfolio of algorithms spanning a multitude of paradigms. It's a lot of work!”

But it is work worth doing, says Bayen, because FLOW is highly scalable. “Many cities have good models of their traffic systems. Putting our software on top of it is really not difficult if those models run in AIMSUN or SUMO, two of the three major simulators. We can put such models into our framework and apply machine learning directly to it.” The cloud-based aspect is essential to this scalability. “Before the cloud became a reality in this arena, people would have a specific architecture that their traffic models would run on. But because FLOW is open source and on AWS, anyone can run it, from anywhere, including other research groups. That’s the power of the cloud.”

Work agrees: “Providing an open-source approach empowers new researchers to explore their own ideas. And using machine learning for large-scale systems is exciting because of the potential for benefits to all — even if only a few parts of the system change their behavior.” And the benefits also extend to the local and global environment, says Bayen, because the emissions per vehicle — both direct, and indirect for electric vehicles — are likely to be significantly reduced.

With the rate at which the technology of mixed-autonomy traffic is advancing, the generation of drivers hitting the roads five years from now may be confused when their parents marvel at how smooth freeway traffic is “these days”, despite the large numbers of vehicles on the road. For the rest of us, knowing that phantom jams’ days are numbered will probably make them easier to bear. Honk if you disagree.


US, WA, Seattle
Job summaryAt Alexa Shopping, we strive to enable shopping in everyday life. We allow customers to instantly order whatever they need, by simply interacting with their Smart Devices such as Amazon Show, Spot, Echo, Dot or Tap. Our Services allow you to shop, no matter where you are or what you are doing, you can go from 'I want that' to 'that's on the way' in a matter of seconds. We are seeking the industry's best to help us create new ways to interact, search and shop. Join us, and you'll be taking part in changing the future of everyday lifeWe are seeking a Data Scientist to be part of the NLU science team for Alexa Shopping. This is a strategic role to shape and deliver our technical strategy in developing and deploying NLU, Machine Learning solutions to our hardest customer facing problems. Our goal is to delight customers by providing a conversational interaction. These initiatives are at the heart of the organization and recognized as the innovations that will allow us to build a differentiated product that exceeds customer expectations. We're a high energy, fast growth business excited to have the opportunity to shape Alexa Shopping NLU is defined for years to come. If this role seems like a good fit, please reach out, we'd love to talk to you.This role requires working closely with business, engineering and other scientists within Alexa Shopping and across Amazon to deliver ground breaking features. You will lead high visibility and high impact programs collaborating with various teams across Amazon. You will work with a team of Language Engineers and Scientists to launch new customer facing features and improve the current features.
US, WA, Bellevue
Job summaryThe People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team.Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions.Key job responsibilitiesUse causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees.A day in the lifeWork with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions.About the teamWe are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, CA, Sunnyvale
Job summaryThe Amazon Alexa app is a companion to Alexa devices for setup, remote control, and enhanced features. The Alexa app understands a customer’s habits, preferences and delivers a personalized experience to help them manage their day by providing relevant information as customers want it. We believe voice is the most natural user interface for interacting with technology across many domains; we are inventing the future. As voice-enabled technology becomes increasingly advanced, consumers are demanding more from what their voice products can do. We’re looking for Scientists who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history.As a Data Scientist, you will help build a production scaled personalized recommendation, Machine Learning (ML) and Deep Learning (DL) models to help derive business value and new insights through the adoption of Artificial Intelligence (AI).Key job responsibilitiesThe successful candidate will be responsible for distilling user data insights for ML science applications and influence business decision with data-driven approach to increase Alexa mobile engagement and growth. A successful candidate will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term solutions.· Expertise in the areas of data science, machine learning and statistics.· Translate business needs into advanced analytics and machine learning models and provide strong algorithm and coding execution and delivery of Machine Learning & Artificial Intelligence.· Work closely with the engineers to architect and develop the best technical design and approach.· Being able to dive a ML / DL project from beginning to end, including understanding the business need, aggregating data, exploring data, building & validating predictive models, and deploying completed models to deliver business impact to the organization.· Analyze, extract, normalize, and label relevant data.· Work with Engineers to help our customers operationalize models after they are built.A day in the life· Design and review mobile experiments for growth and engagement· Build statistical models and generate data insights to understand mobile growth and retention· Feature engineering to improve ML model performance.· Analyze, extract, normalize, and label relevant data.· Work with Engineers to deploy applications to production· Work with product manager to convert business problems to science problems and define the solutions.About the teamAlexa Mobile Intelligence team is motivated to make Alexa mobile app being the best intelligent assistant and providing personalized relevant features and content by understanding customers' habits, preferences, hence will reach high growth and retention for the app.
US, CA, Sunnyvale
Job summaryOur Alexa Product Advisor (part of Alexa Shopping) vision is to provide the best possible answers for a wide range of questions around product being asked by the customer. Our customers ask various questions to Alexa regarding products, and not all the time we can find an answer in our knowledge sources. "Alexa, how strong is the magsafe on iPhone 12?" is a typical question that could be asked to our system. The first step in providing these answers is to form high quality classification and machine understanding of natural language questions into their core components (shape, product references, attributes, pronouns etc).Alexa Shopping is looking for an experienced Data Scientist to be a part of a team solving complex natural language processing problems and customer demand insights (including segmentation analysis and personas building using big data, ML and potentially AI). This is a blue-sky role that gives you a chance to roll up your sleeves and dive into big data sets in order to build simulations and experimentation systems at scale, build optimization algorithms and leverage cutting-edge technologies across Amazon. This is an opportunity to think big about how to solve a challenging problem for the customers and understand their requirements for products.If you are thinking how big is this, then think how we searched on desktops in 2000's, mobiles in 2010s and on voice and intelligent devices today! We want to provide a great product experience though the intelligence we are building about products on any platform, making it easier for customers to learn about the products on Echo devices, mobile app, desktop, etcYou will work closely with product and technical leaders throughout Alexa Shopping and will be responsible for influencing technical decisions in areas of development/modelling that you identify as critical future product offerings. You will identify both enablers and blockers of adoption for product understanding, and build programs to raise the bar in terms of understanding product questions and predict the shaping of customer utterances as we move from simple to complex utterances.The ideal candidate will have extensive experience in Science work, business analytics and have the aptitude to incorporate new approaches and methodologies while dealing with ambiguities in sourcing processes. Excellent business and communication skills are a must to develop and define key business questions and to build data sets that answer those questions. You should have a demonstrated ability to think strategically and analytically about business, product, and technical challenges. Further, you must have the ability to build and communicate compelling value propositions, and work across the organization to achieve consensus. This role requires a strong passion for customers, a high level of comfort navigating ambiguity, and a keen sense of ownership and drive to deliver results.
US, CA, Palo Alto
Job summaryAmazon is the 4th most popular site in the US (http://www.alexa.com/topsites/countries/US). Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include:· Can a focus on compilers and custom hardware help us accelerate model training and reduce hardware costs?· Can combining supervised multi-task training with unsupervised training help us to improve model accuracy?· Can we transfer our knowledge of the customer to every language and every locale ?This is a unique opportunity to get in on the ground floor, shape, and build the next-generation of Amazon Search. We are looking for exceptional scientists and ML engineers who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization.Please visit https://www.amazon.science for more information
US, CA, Sunnyvale
Job summaryAmazon Lab 126 specializes in pioneering new home experiences that brings the future one step closer. The most recent invention is Amazon Astro, a home robot that brings the family closer and provides peace of mind. Building a home robot that gracefully moves through an ever-changing environment, such as one’s home, required challenging the state-of-the-art and furthering it, in areas of Perception, SLAM, Mapping and Intelligent Motion to name a few. Packing that technology in an affordable piece of hardware that consistently accomplishes its tasks, is a whole another story!Ada Lovelace, the first computer programmer, once famously said, “Those who have learned to walk on the threshold of the unknown worlds, by means of what are commonly termed par excellence the exact sciences, may then, with the fair white wings of imagination, hope to soar further into the unexplored amidst which we live”. With the launch of Astro, we are on the threshold of something that will change our lives forever. Join us, as we soar further to imagine and invent new experiences that will one day become the future. It is still Day One!Key job responsibilitiesAs a Senior Applied Scientist in Robotics, you will work with a team of smart, passionate and diverse engineers researching and developing mobility solutions for the robot, in the areas of intelligent motion, mapping, exploration - to name a few. You will design solutions for complex and ambiguous problem areas where the business problem or opportunity may not yet be defined. Most business problems that you will take on, require scientific breakthroughs. You will provide context for current technology choices and make recommendations on the right modelling and component design approach to achieve the desired customer experience/business outcome. You will set standards and proactively drive components to utilize and improve on state-of-the-art techniques. Your will create solutions that are inventive, easily maintainable, scalable, and extensible. You will file for patents and publish research work where opportunities arise, and give internal or external presentations about your area of speciality.
IL, Haifa
Job summaryYou: Alexa, I am looking for a role in which I could learn, research, and innovate in AI and, most of all, impact the life of millions of customers worldwide. What do you suggest?Alexa: The Alexa Shopping team is looking for research engineers to help me become the best personal shopping assistant. Do you want to hear more?You: Yes, please!Alexa: As a research engineer, you will work with top researchers and engineers, both locally and abroad, to explore and develop new AI technologies helping me in my journey to become the ultimate shopping assistant for millions of customers around the world. You should have strong computer science foundations, excellent development skills, and some experience with research methodology. You also preferably have some applied or research expertise in at least one of the following fields: Web search and mining, Machine Learning, Natural Language Processing, Computer Vision, Speech Processing, or Artificial Intelligence.
US, CA, Sunnyvale
Job summaryAmazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced groundbreaking devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?The Role:We are looking for a passionate, talented and inventive Senior Applied Scientist - Sensors to join our team. As part of the larger technology team working on new consumer technology, your work will have a large impact to hardware, internal software developers, ecosystem, and ultimately the lives of Amazon customers. You must love high quality signal processing, enjoy sensor data analysis, optimizing sensor performance, and have a feel for what a good consumer experience should be like. In this role, you will: - Engage with an experienced cross-disciplinary staff to conceive and design innovative consumer products · Work closely with an internal interdisciplinary team, and outside partners to drive key aspects of product definition, execution and test · Development of new sensor algorithms · Optimization and porting of sensor algorithms to different platforms. · Integrate vendor hardware and software stacks · Be able, and willing, to multi-task and learn new technologies quickly · Be responsive, flexible and able to succeed within an open collaborative peer environment
IE, D, Dublin
Job summary*Flexibility for alternate EU Amazon offices*Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing organization is on the front line of that mission by hiring the hourly fulfilment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon is creating a Workforce Staffing research program.This program will re-invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team will own multi-layered research and program implementation to drive deep learnings, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Are you a tinkerer by trade? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you.As a Manager, Data Science in Workforce Staffing, you will have a strong focus on quantitative data analysis, understanding labor markets and the candidates within them. You will be responsible for building and developing a team, developing roadmaps, and driving business impact through your research at global scale.You will lead data science projects using your deep expertise in statistics (regressions, multilevel models, structural equation models, etc.), and data collection in a variety of settings (e.g., field studies, surveys, existing large data sets) to define and answer nebulous problems. You leverage your quantitative background to develop and test theoretical frameworks and design experiments. You design, deployment, and conduct analysis of our global candidate research activities, using experimental, quasi-experimental, and RCT methods. You relentlessly obsess over understanding our candidates and what attracts them to Amazon. You work with colleagues across Research, Data Science, Business Intelligence and related teams to enable Amazon find and hire the right candidates for the right roles at an unprecedented scale.A customer-obsessed, relentless curiosity is a must, as is commitment to the highest standards of methodological rigor that a given study allows. This role provides opportunity for significant exposure to Amazon’s culture, leadership, and global businesses, and furthermore provides significant opportunity to influence how Workforce Staffing matches talent to business demand.This will be a highly visible role across multiple key deliverables for our global organization. If you are passionate and curious about data, obsess over customers, love questioning the status quo, and want to make the world a better place, let’s chat. #scienceemea
ES, M, Madrid
Job summary*Flexibility for alternate EU Amazon offices*Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing organization is on the front line of that mission by hiring the hourly fulfilment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon is creating a Workforce Staffing research program.This program will re-invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team will own multi-layered research and program implementation to drive deep learnings, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Are you a tinkerer by trade? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you.As a Manager, Data Science in Workforce Staffing, you will have a strong focus on quantitative data analysis, understanding labor markets and the candidates within them. You will be responsible for building and developing a team, developing roadmaps, and driving business impact through your research at global scale.You will lead data science projects using your deep expertise in statistics (regressions, multilevel models, structural equation models, etc.), and data collection in a variety of settings (e.g., field studies, surveys, existing large data sets) to define and answer nebulous problems. You leverage your quantitative background to develop and test theoretical frameworks and design experiments. You design, deployment, and conduct analysis of our global candidate research activities, using experimental, quasi-experimental, and RCT methods. You relentlessly obsess over understanding our candidates and what attracts them to Amazon. You work with colleagues across Research, Data Science, Business Intelligence and related teams to enable Amazon find and hire the right candidates for the right roles at an unprecedented scale.A customer-obsessed, relentless curiosity is a must, as is commitment to the highest standards of methodological rigor that a given study allows. This role provides opportunity for significant exposure to Amazon’s culture, leadership, and global businesses, and furthermore provides significant opportunity to influence how Workforce Staffing matches talent to business demand.This will be a highly visible role across multiple key deliverables for our global organization. If you are passionate and curious about data, obsess over customers, love questioning the status quo, and want to make the world a better place, let’s chat. #scienceemea