Alex-Bayen.jpg
Alexandre Bayen is the Liao-Cho Professor of Engineering at the University of California Berkeley and director of its Institute of Transportation Studies. Bayen plays leading roles in multiple transportation projects.
Courtesy of Alexandre Bayen

Alexandre Bayen is a driving force behind mixed-autonomy traffic

Coordinated automation could improve traffic flow, boost efficiency, and slash emissions. A combination of machine learning, big data, and Amazon Web Services is making this future possible.

The smooth-flowing traffic of the future is just around the corner. Advances in vehicle automation are converging with developments in machine learning (ML) and cloud computing to create self-driving vehicles that not only control themselves safely, but also have an oversized beneficial effect on the journeys of all the regular drivers on the road around them. Welcome to “mixed autonomy traffic”.

Leading the pack into this future is Alexandre Bayen, the Liao-Cho Professor of Engineering at the University of California Berkeley and director of its Institute of Transportation Studies. An expert in control and optimization, Bayen is playing leading roles in multiple transportation projects, ranging from cutting-edge, open-source traffic simulation and optimization, to large scale freeway observation that involves putting automated vehicles into real traffic to explore the impact of ML-derived self-driving behaviors. These automated vehicles also have human supervisors at the wheel, ready to take over the vehicle at any time if needed.

Before delving into Bayen’s work, an example of the promise of mixed autonomy traffic is in order.

Traffic jam experiment
This video is from a 2008 experiment in which people are attempting to maintain the same speed while driving single-file around a circular track.

Anyone regularly caught in “phantom” traffic jams, which have no obvious cause, knows how annoying they are. It is simply the nature of human drivers to create these so-called “stop-and-go waves” — we just can’t help jamming up then spreading out on the road, as illustrated by a brief video (above) of a classic 2008 experiment in which people are attempting to maintain the same speed while driving single-file around a circular track.

Fast forward to 2017, to a series of similar experiments led by Bayen’s collaborators, Jonathan Sprinkle of the University of Arizona and Daniel Work of Vanderbilt University. This work echoed the 2008 experiment, but with an enormous difference: of the 20 or so cars on a circular track, one of them could switch into self-driving mode. When it did, the effect on the stop-and-go waves was immediate — and remarkable.

Self-driving cars experiment demonstrates dramatic improvements in traffic flow

Simply through the slowing or accelerating of this single car, in accordance with its traffic-optimization algorithms, the traffic waves dissipated significantly. In one test, fuel consumption of the cars in the ring was reduced by more than 40% and excessive braking events dropped from 8.5 per vehicle-kilometer to near zero.

The experimenters concluded that traffic flow control would be possible in real-life traffic with less than 5% of cars being automated.

A self-driving future

With that in mind, what will happen to our existing traffic flow when increasing numbers of vehicles are self-driving? This is the future being shaped by Bayen and his group. At the center of his work is an open-source framework called FLOW. With deep reinforcement learning at its heart, FLOW is an optimization and microsimulation tool for traffic flow. Don’t be fooled by “micro” in this context — the simulation features hundreds of thousands of vehicles on complex road systems. FLOW allows the virtual exploration of complex traffic optimization challenges on a wide variety of road set-ups.

“Traffic simulation engines have become really good, very accurate, in the last decade. And the computation required has become really tractable, mostly because of scalable cloud computing offered by Amazon Web Services and others,” says Bayen.

Deep reinforcement learning is particularly suited to developing mixed-autonomy traffic optimization because it enables simulated self-driving vehicles to try out different driving behaviors. If a set of driving policies results in lower fuel use without compromising journey time, for example, the algorithm is rewarded. “Ten years ago it was really hard to compute the outcome of experiments in simulation — and very costly. You could do a couple of intersections, and maybe a couple hundred vehicles,” says Bayen. “With the plethora of data available now, combined with the ability to do these computations very fast, it has become really quick to compute the rewards and to iterate until you get something that works very well.”

Achieving a FLOW state

Bayen is keen to clarify the primary goal of FLOW. “It’s important to differentiate between boosting energy efficiency and reducing congestion. We are not attempting to fix congestion — that is not our goal, and these would not be the right tools. We are improving the energy efficiency of traffic, which is a very different problem.”

We are not attempting to fix congestion — that is not our goal, and these would not be the right tools. We are improving the energy efficiency of traffic, which is a very different problem.
Alexandre Bayen

Indeed, in simulations, FLOW’s algorithms have a minimal effect on travel time — but a dramatic effect on the driving experience, Bayen explains. “The amount of braking is significantly reduced and the amount of acceleration — where most of the energy is burned and pollutants emitted — has been significantly reduced as well. That's the main challenge.”

In 2019, Bayen received an Amazon ML Research Award to support the development of "Applications of Deep-RL for Training Connected, Autonomous Vehicles in Mixed Environments". But even before the award, FLOW was intrinsically linked to Amazon Web Services (AWS), Bayen explains. “When we started FLOW in 2018, there were only three tools widely used for microsimulation of traffic: SUMO, Aimsun, and PTV Vissim. SUMO was an open-source platform already running on AWS, but Aimsun — now owned by Siemens Mobility — built the first instantiation of their software on the AWS cloud specifically for us,” says Bayen. “The FLOW Project was the first time anyone managed to put these three big components together: the machine learning, the cloud computing, and the simulation engine. It was historic.”

A key reason this combination is important, Sprinkle says, is big data: “For societal-scale systems to take advantage of ML, they need to take advantage of these gigantic datasets. Hosting the ML algorithms on AWS — in the same place the data are — speeds up discovery.”

The success of FLOW generated a lot of interest in Bayen’s group, including from the US government, which subsequently decided to fund the research. That is when Bayen and a broad collaboration, called the CIRCLES Consortium, was formed, with Bayen, Work, and Sprinkle among the co-principal investigators. They started working with Toyota, GM, and Nissan, to develop a proof-of-concept to demonstrate that mixed-autonomy traffic control actually works on the road. “That is what we are doing now, with the generous funding of the US Department of Energy,” says Bayen.

Part of this effort is a project called I-24 Mobility Technology Interstate Observation Network (I-24 MOTION). The CIRCLES Consortium is installing video monitoring infrastructure along six miles of I-24 in Tennessee, to gather extensive, top-quality traffic data. When completed in 2022, it will consist of 400 pole-mounted, 4k-resolution cameras. “The network is already gathering an astronomical amount of data — on the order of petabytes,” says Bayen. “It will not only provide the Tennessee Department of Transportation with a lot more operational capabilities for freeway operations, but also provide the research community with an unprecedented data set that has the potential to unveil a lot of interesting traffic features.”

Real life traffic testing

This is where the rubber hits the road. This year, the CIRCLES Consortium is deploying self-driving vehicles on that same stretch of I-24, to see how ML-derived self-driving algorithms might positively impact real-world traffic. “We’re hoping that by driving a few cars differently, it will reduce energy use for the entire stream of traffic,” says Sprinkle.

Heavy morning traffic on Highway 101 going through Silicon Valley, South San Francisco Bay Area
Alexandre Bayen says going from simulations to real-world deployment is significant. “If something runs really well in simulation, one still needs to be certain that it will transfer well to hardware and run well with real cars on real roads using imperfect data."
Sundry Photography/Getty Images

“This summer, we're doing 14 vehicles — four with automation and 10 as monitoring vehicles gathering local measurements,” says Bayen. Next year, another live deployment is planned, but with a dramatic increase in the number of automated and monitoring vehicles. 

This step from simulation to real-world deployment is more like a giant leap. “If something runs really well in simulation, one still needs to be certain that it will transfer well to hardware and run well with real cars on real roads using imperfect data. That's a big challenge,” says Bayen.

To that end, since 2016, the US National Science Foundation has funded efforts to develop the software framework that enables FLOW to be deployed on a variety of real vehicles and many different hardware platforms. The real-world deployment is a cautious, painstaking process. “We have facilities at Berkeley and Vanderbilt for low speed, and later high-speed testing, that enables us to work through the sequence of steps,” Bayen notes. “Now we’ve done this on private roads, open roads, and have progressed to freeway traffic.”  

Another challenge for this field is predicting how cars might transmit their locations in the future. There are also ongoing debates around how driver movement data will or should be collected, protected, transmitted, and shared, says Bayen. “Our job is to work on the different architectures that can support these many potential paradigms. These include fully ‘decentralized’ vehicles that do not need to talk to each other or to a central authority to improve overall traffic flow, or fully centralized, in which everybody talks to everybody. Or partially coordinated, in which cars only talk to their neighboring cars, and so on. While we wait for a public policy on this, we are developing an entire portfolio of algorithms spanning a multitude of paradigms. It's a lot of work!”

But it is work worth doing, says Bayen, because FLOW is highly scalable. “Many cities have good models of their traffic systems. Putting our software on top of it is really not difficult if those models run in AIMSUN or SUMO, two of the three major simulators. We can put such models into our framework and apply machine learning directly to it.” The cloud-based aspect is essential to this scalability. “Before the cloud became a reality in this arena, people would have a specific architecture that their traffic models would run on. But because FLOW is open source and on AWS, anyone can run it, from anywhere, including other research groups. That’s the power of the cloud.”

Work agrees: “Providing an open-source approach empowers new researchers to explore their own ideas. And using machine learning for large-scale systems is exciting because of the potential for benefits to all — even if only a few parts of the system change their behavior.” And the benefits also extend to the local and global environment, says Bayen, because the emissions per vehicle — both direct, and indirect for electric vehicles — are likely to be significantly reduced.

With the rate at which the technology of mixed-autonomy traffic is advancing, the generation of drivers hitting the roads five years from now may be confused when their parents marvel at how smooth freeway traffic is “these days”, despite the large numbers of vehicles on the road. For the rest of us, knowing that phantom jams’ days are numbered will probably make them easier to bear. Honk if you disagree.

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques