Alex-Bayen.jpg
Alexandre Bayen is the Liao-Cho Professor of Engineering at the University of California Berkeley and director of its Institute of Transportation Studies. Bayen plays leading roles in multiple transportation projects.
Courtesy of Alexandre Bayen

Alexandre Bayen is a driving force behind mixed-autonomy traffic

Coordinated automation could improve traffic flow, boost efficiency, and slash emissions. A combination of machine learning, big data, and Amazon Web Services is making this future possible.

The smooth-flowing traffic of the future is just around the corner. Advances in vehicle automation are converging with developments in machine learning (ML) and cloud computing to create self-driving vehicles that not only control themselves safely, but also have an oversized beneficial effect on the journeys of all the regular drivers on the road around them. Welcome to “mixed autonomy traffic”.

Leading the pack into this future is Alexandre Bayen, the Liao-Cho Professor of Engineering at the University of California Berkeley and director of its Institute of Transportation Studies. An expert in control and optimization, Bayen is playing leading roles in multiple transportation projects, ranging from cutting-edge, open-source traffic simulation and optimization, to large scale freeway observation that involves putting automated vehicles into real traffic to explore the impact of ML-derived self-driving behaviors. These automated vehicles also have human supervisors at the wheel, ready to take over the vehicle at any time if needed.

Before delving into Bayen’s work, an example of the promise of mixed autonomy traffic is in order.

Traffic jam experiment
This video is from a 2008 experiment in which people are attempting to maintain the same speed while driving single-file around a circular track.

Anyone regularly caught in “phantom” traffic jams, which have no obvious cause, knows how annoying they are. It is simply the nature of human drivers to create these so-called “stop-and-go waves” — we just can’t help jamming up then spreading out on the road, as illustrated by a brief video (above) of a classic 2008 experiment in which people are attempting to maintain the same speed while driving single-file around a circular track.

Fast forward to 2017, to a series of similar experiments led by Bayen’s collaborators, Jonathan Sprinkle of the University of Arizona and Daniel Work of Vanderbilt University. This work echoed the 2008 experiment, but with an enormous difference: of the 20 or so cars on a circular track, one of them could switch into self-driving mode. When it did, the effect on the stop-and-go waves was immediate — and remarkable.

Self-driving cars experiment demonstrates dramatic improvements in traffic flow

Simply through the slowing or accelerating of this single car, in accordance with its traffic-optimization algorithms, the traffic waves dissipated significantly. In one test, fuel consumption of the cars in the ring was reduced by more than 40% and excessive braking events dropped from 8.5 per vehicle-kilometer to near zero.

The experimenters concluded that traffic flow control would be possible in real-life traffic with less than 5% of cars being automated.

A self-driving future

With that in mind, what will happen to our existing traffic flow when increasing numbers of vehicles are self-driving? This is the future being shaped by Bayen and his group. At the center of his work is an open-source framework called FLOW. With deep reinforcement learning at its heart, FLOW is an optimization and microsimulation tool for traffic flow. Don’t be fooled by “micro” in this context — the simulation features hundreds of thousands of vehicles on complex road systems. FLOW allows the virtual exploration of complex traffic optimization challenges on a wide variety of road set-ups.

“Traffic simulation engines have become really good, very accurate, in the last decade. And the computation required has become really tractable, mostly because of scalable cloud computing offered by Amazon Web Services and others,” says Bayen.

Deep reinforcement learning is particularly suited to developing mixed-autonomy traffic optimization because it enables simulated self-driving vehicles to try out different driving behaviors. If a set of driving policies results in lower fuel use without compromising journey time, for example, the algorithm is rewarded. “Ten years ago it was really hard to compute the outcome of experiments in simulation — and very costly. You could do a couple of intersections, and maybe a couple hundred vehicles,” says Bayen. “With the plethora of data available now, combined with the ability to do these computations very fast, it has become really quick to compute the rewards and to iterate until you get something that works very well.”

Achieving a FLOW state

Bayen is keen to clarify the primary goal of FLOW. “It’s important to differentiate between boosting energy efficiency and reducing congestion. We are not attempting to fix congestion — that is not our goal, and these would not be the right tools. We are improving the energy efficiency of traffic, which is a very different problem.”

We are not attempting to fix congestion — that is not our goal, and these would not be the right tools. We are improving the energy efficiency of traffic, which is a very different problem.
Alexandre Bayen

Indeed, in simulations, FLOW’s algorithms have a minimal effect on travel time — but a dramatic effect on the driving experience, Bayen explains. “The amount of braking is significantly reduced and the amount of acceleration — where most of the energy is burned and pollutants emitted — has been significantly reduced as well. That's the main challenge.”

In 2019, Bayen received an Amazon ML Research Award to support the development of "Applications of Deep-RL for Training Connected, Autonomous Vehicles in Mixed Environments". But even before the award, FLOW was intrinsically linked to Amazon Web Services (AWS), Bayen explains. “When we started FLOW in 2018, there were only three tools widely used for microsimulation of traffic: SUMO, Aimsun, and PTV Vissim. SUMO was an open-source platform already running on AWS, but Aimsun — now owned by Siemens Mobility — built the first instantiation of their software on the AWS cloud specifically for us,” says Bayen. “The FLOW Project was the first time anyone managed to put these three big components together: the machine learning, the cloud computing, and the simulation engine. It was historic.”

A key reason this combination is important, Sprinkle says, is big data: “For societal-scale systems to take advantage of ML, they need to take advantage of these gigantic datasets. Hosting the ML algorithms on AWS — in the same place the data are — speeds up discovery.”

The success of FLOW generated a lot of interest in Bayen’s group, including from the US government, which subsequently decided to fund the research. That is when Bayen and a broad collaboration, called the CIRCLES Consortium, was formed, with Bayen, Work, and Sprinkle among the co-principal investigators. They started working with Toyota, GM, and Nissan, to develop a proof-of-concept to demonstrate that mixed-autonomy traffic control actually works on the road. “That is what we are doing now, with the generous funding of the US Department of Energy,” says Bayen.

Part of this effort is a project called I-24 Mobility Technology Interstate Observation Network (I-24 MOTION). The CIRCLES Consortium is installing video monitoring infrastructure along six miles of I-24 in Tennessee, to gather extensive, top-quality traffic data. When completed in 2022, it will consist of 400 pole-mounted, 4k-resolution cameras. “The network is already gathering an astronomical amount of data — on the order of petabytes,” says Bayen. “It will not only provide the Tennessee Department of Transportation with a lot more operational capabilities for freeway operations, but also provide the research community with an unprecedented data set that has the potential to unveil a lot of interesting traffic features.”

Real life traffic testing

This is where the rubber hits the road. This year, the CIRCLES Consortium is deploying self-driving vehicles on that same stretch of I-24, to see how ML-derived self-driving algorithms might positively impact real-world traffic. “We’re hoping that by driving a few cars differently, it will reduce energy use for the entire stream of traffic,” says Sprinkle.

Heavy morning traffic on Highway 101 going through Silicon Valley, South San Francisco Bay Area
Alexandre Bayen says going from simulations to real-world deployment is significant. “If something runs really well in simulation, one still needs to be certain that it will transfer well to hardware and run well with real cars on real roads using imperfect data."
Sundry Photography/Getty Images

“This summer, we're doing 14 vehicles — four with automation and 10 as monitoring vehicles gathering local measurements,” says Bayen. Next year, another live deployment is planned, but with a dramatic increase in the number of automated and monitoring vehicles. 

This step from simulation to real-world deployment is more like a giant leap. “If something runs really well in simulation, one still needs to be certain that it will transfer well to hardware and run well with real cars on real roads using imperfect data. That's a big challenge,” says Bayen.

To that end, since 2016, the US National Science Foundation has funded efforts to develop the software framework that enables FLOW to be deployed on a variety of real vehicles and many different hardware platforms. The real-world deployment is a cautious, painstaking process. “We have facilities at Berkeley and Vanderbilt for low speed, and later high-speed testing, that enables us to work through the sequence of steps,” Bayen notes. “Now we’ve done this on private roads, open roads, and have progressed to freeway traffic.”  

Another challenge for this field is predicting how cars might transmit their locations in the future. There are also ongoing debates around how driver movement data will or should be collected, protected, transmitted, and shared, says Bayen. “Our job is to work on the different architectures that can support these many potential paradigms. These include fully ‘decentralized’ vehicles that do not need to talk to each other or to a central authority to improve overall traffic flow, or fully centralized, in which everybody talks to everybody. Or partially coordinated, in which cars only talk to their neighboring cars, and so on. While we wait for a public policy on this, we are developing an entire portfolio of algorithms spanning a multitude of paradigms. It's a lot of work!”

But it is work worth doing, says Bayen, because FLOW is highly scalable. “Many cities have good models of their traffic systems. Putting our software on top of it is really not difficult if those models run in AIMSUN or SUMO, two of the three major simulators. We can put such models into our framework and apply machine learning directly to it.” The cloud-based aspect is essential to this scalability. “Before the cloud became a reality in this arena, people would have a specific architecture that their traffic models would run on. But because FLOW is open source and on AWS, anyone can run it, from anywhere, including other research groups. That’s the power of the cloud.”

Work agrees: “Providing an open-source approach empowers new researchers to explore their own ideas. And using machine learning for large-scale systems is exciting because of the potential for benefits to all — even if only a few parts of the system change their behavior.” And the benefits also extend to the local and global environment, says Bayen, because the emissions per vehicle — both direct, and indirect for electric vehicles — are likely to be significantly reduced.

With the rate at which the technology of mixed-autonomy traffic is advancing, the generation of drivers hitting the roads five years from now may be confused when their parents marvel at how smooth freeway traffic is “these days”, despite the large numbers of vehicles on the road. For the rest of us, knowing that phantom jams’ days are numbered will probably make them easier to bear. Honk if you disagree.

Related content

CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, Santa Clara
The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: - AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization - Machine Learning Compiler: Creating advanced compiler techniques for ML workloads - System Robustness: Building tools for accuracy and reliability validation - Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures A day in the life AWS Utility Computing (UC) provides product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Additionally, this role may involve exposure to and experience with Amazon's growing suite of generative AI services and other cloud computing offerings across the AWS portfolio. About the team AWS Neuron is the software of Trainium and Inferentia, the AWS Machine Learning chips. Inferentia delivers best-in-class ML inference performance at the lowest cost in the cloud to our AWS customers. Trainium is designed to deliver the best-in-class ML training performance at the lowest training cost in the cloud, and it’s all being enabled by AWS Neuron. Neuron is a Software that include ML compiler and native integration into popular ML frameworks. Our products are being used at scale with external customers like Anthropic and Databricks as well as internal customers like Alexa, Amazon Bedrocks, Amazon Robotics, Amazon Ads, Amazon Rekognition and many more. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Application deadline: Applications will be accepted on an ongoing basis Amazon Ads is re-imagining advertising through cutting-edge generative artificial intelligence (AI) technologies. We combine human creativity with AI to transform every aspect of the advertising life cycle—from ad creation and optimization to performance analysis and customer insights. Our solutions help advertisers grow their brands while enabling millions of customers to discover and purchase products through delightful experiences. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground in product and technical innovations. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Why you’ll love this role: This role offers unprecedented breadth in ML applications and access to extensive computational resources and rich datasets that will enable you to build truly innovative solutions. You'll work on projects that span the full advertising life cycle, from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll work alongside talented engineers, scientists, and product leaders in a culture that encourages innovation, experimentation, and bias for action, and you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their marks. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two Applied Scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/ Key job responsibilities As a Senior Applied Scientist in Amazon Ads, you will: - Research and implement cutting-edge ML approaches, including applications of generative AI and large language models - Develop and deploy innovative ML solutions spanning multiple disciplines – from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models - Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data - Build and optimize models that balance multiple stakeholder needs - helping customers discover relevant products while enabling advertisers to achieve their goals efficiently - Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams including engineers, product managers, and other scientists - Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact - Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents for our autonomous campaigns experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Autonomous Campaigns team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware campaign creation and management system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, San Francisco
The AGI Autonomy Perception team performs applied machine learning research, including model training, dataset design, pre- and post- training. We train Nova Act, our state-of-the art computer use agent, to understand arbitrary human interfaces in the digital world. We are seeking a Machine Learning Engineer who combines strong ML expertise with software engineering excellence to scale and optimize our ML workflows. You will be a key member on our research team, helping accelerate the development of our leading computer-use agent. We are seeking a strong engineer who has a passion for scaling ML models and datasets, designing new ML frameworks, improving engineering practices, and accelerating the velocity of AI development. You will be hired as a Member of Technical Staff. Key job responsibilities * Design, build, and deploy machine learning models, frameworks, and data pipelines * Optimize ML training, inference, and evaluation workflows for reliability and performance * Evaluate and improve ML model performance and metrics * Develop tools and infrastructure to enhance ML development productivity
US, CA, San Francisco
Do you want to create intelligent, adaptable robots with global impact? We are seeking an experienced Applied Science Manager to lead a team of talented applied scientists and software engineers developing and deploying advanced manipulation strategies and algorithms. You will drive innovation that enables manipulation in high-contact, high-density, and diverse conditions with the speed and reliability that will delight our customers. Collaborating with cross-functional teams across hardware, software, and science, you will deliver reliable and high-performing solutions that will scale across geographies, applications, and conditions. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a disruptor, prolific innovator, and a reputed problem solver—someone who truly enables robotics to significantly impact the lives of millions of consumers. A day in the life - Prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in people and performance management tasks. - Set a vision for the team and create the technical roadmap that deliver results for customers while thinking big for future applications. - Guide the research, design, deployment, and evaluation of complex motion planning and control algorithms for contact-rich, cluttered, real-world manipulation problems. - Work closely with perception, hardware, and software teams to create integrated robotic solutions that are better than the sum of their parts. - Implement best practices in applied research and software development, managing project timelines, resources, and deliverables effectively. Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders